SASdecoder™ 6.3 User Manual

SASdecoder™ is a utility that translates certain forms of SAS® code into Stata® dictionaries, Stata
do-files, and Stat/Transfer™ schema files, facilitating the reading of raw data into various storage
formats. This is useful when you are presented with SAS code for reading that raw data file, but

you do not use SAS.

SASdecoder is a product of Essistant Software, LL.C;
114 Hawthorne Road
Baltimore, MD 21210

www.essistantsoftware.com

For additional information or product support, or to report problems, write to
techsupport@essistant-software.com

Copyright © 2003-2011, Essistant Software, LL.C
Edition 1; October 2, 2011

SAS is a registered trademark of SAS Institute, Inc.; www.sas.com
Essistant Software, LLC is not affiliated with SAS Institute, Inc.

Stata is a registered trademark of StataCorp LP; www.stata.com

Stat/Transfer is a trademarked product of Circle Systems, Inc.; www.circlesys

. Ccom

License Agreement and Limited Warranty
IMPORTANT: READ CAREFULLY BEFORE USING SASDECODER SOFTWARE.

By clicking the “I Agree” box during the installation process, or using any portion of the
SOFTWARE, you indicate your acceptance of the following License Agreement.

As a USER of the SASdecoder™ SOFTWARE, you are granted the license to use it for translating
SAS® System Program files, and for no other use. You, or any persons or entities in possession of
the SOFTWARE, may not modify, translate, reverse-engineer, decompile, or disassemble this
SOFTWARE. You may not incorporate this SOFTWARE into other products (commercial or
otherwise) or create derivative works based on it. You may not sell, rent, or lease any rights to this
SOFTWARE or accompanying DOCUMENTATION. You may not conduct a commercial
enterprise involving the use of this SOFTWARE, other than to distribute files produced by
SASdecoder that correspond to raw data files if your product is raw data.

Users are free to distribute or publish any output of SASdecoder, under the condition that the file
shall retain the header lines that indicate that it is a product of SASdecoder and that mention
Essistant Software — or that it includes a citation of SASdecoder and Essistant Software, LLC.

Essistant Software, LL.C warrants that the SASdecoder SOFTWARE will perform in substantial
compliance with the specifications set forth the in the User Manual, provided that it is not
modified and that it is used on the hardware and operating systems for which it was designed. This
warranty is limited to the 90-day period from your original purchase. If you report in writing within
90 days of purchase, a substantial defect in the SOFTWARE’s performance, Essistant Software
will attempt to correct it, or, at its option, issue a refund of the amount originally paid for the
SOFTWARE. Essistant Software, LLC will not be held liable for consequential damages due to
failure of SASdecoder to perform or to perform correctly; or any inaccuracies or shortcomings of
the User Manual. Liability shall be limited to the purchase cost of the SOFTWARE.

Essistant Software, LLC does NOT warrant that the User Manual presents an accurate description
of SAS functionality. The descriptions of SAS features contained herein are not intended to be
instructions for using SAS.

Contents

License Agreement and Limited Warrantycccccciiiiiiiiiiiiiiicceeeee e, 2
Preliminary NOTES ... nan 5
What’s New — Version 6.2 10 6.3ccc.oiiiiiiiiiiiiiiie ettt e et e e e e aaeea e 5

L 0] 31 B 5
USEIr FE@ADACK ...t ettt e e e e e et e e e e e e e e 5
INErOAUCTIONooooiiiiiie et e e e e e ettt e e e e e e ettt e e e e e e e e s saaseeeeees 6
Uses and Capabilities of SASAecoderooooiiiiiiiiiiiiiiee e 6
Stata and Stat/Transfer QUEPUL...............oooooiiiiiiiiii e e e e e eaens 6
A Synopsis of What SASdecoder Can Do.................coooooiiiiiiiiiii e 8
More on What SASdecoder Can DoO..................ooviiiiiiiiiiiiiccee e e 10
USING the OULPULoooiiiiiiii e e e e e e e e e e e e e e e e aaaraaeeeeaeeesnnnns 11
More about the Do-File and the Stat/Transfer Schema File: Value Labels.......................... 12
SAMPIE FIIES.......coooii e e e e e e e e e e et aa e e e e e e e e eannes 13
Activation and RUNNINE................coooiiiiiiiiiiiicee e e e e e e e e aaarareeeeeeeeeennnns 15
ACHIVALIONooiiiiiiiii et e ettt e e e ettt e e e ettt e e e ettt e e e enbbeeeeenraaeans 15
RUNNING SASAECOUEToooiiiiiiiiiiieee e e e e e e e e e e e e e e e aaaraaeeeaeeeeennnns 16
Running SASdecoder via the Windows Interface........................ccooooiiiiiiiiiiiiiie e, 16
Running SASdecoder via the Command Interfaceccccocoiiiiiiiiiiiiiiieee e, 20
OPLIONIS ..ot e e e e e ettt e e e e e e e e e e ataaaaeeeeeaeeesasssasasaseaaeeesassssssaseeeaaeessnnnnes 24
Rarely-needed OPLtions.................oviiiiiiiiiiiiiiiiiiee e e e e e e e e e eaaaaaeeeeeeeeeenens 28
Special Note about Variables that are Commented- or Edited-Out....................................... 29
Fundamental Data-Reading Conceptscoooiiiiiiiiiiiie e 31
Raw Data vs. Internal Format ... 31
Relational Tables................oooiiiii ettt e e e e e e e e e e e e e 31
The Raw Data File; FIelds...............ooooviiiiiiiiiii et e e eeeaas 32
Storage Length ..o e e e e e e r e e e e e e e e e nanes 32
DAta TYPES.....ccco oo e e e aaaan 33
SAS Language Features Accepted by SASdecoder — the Lexical Level.................................... 34
TOKEIIS ...ttt e e e ettt et e e e e e e e bbbttt e e e e e e e e ettt e eeeeeeeaaanas 34
A L 1 T 35
L001) 1111121 1 KOOSR PP PRRPPPUPN 35
Character String LiteralS..................cccoiiiiiiiii e e e e 39
INUMETIC LIETALS ... ettt e e e e s et e e e e e e e e 40
Formats and INformats ... 40
SPeECial CRATACLETSooooiiiiiiiieiiee et e e e e e e e ae e e e e e e e e s eaasaaaseeeaaeeeennnes 41
SAS Language Features Accepted by SASdecoder — Structure..................ccccovvveeeeeeeeeccnnnnnee. 42
SAS SEEPS.....oeeiiiiieeeee et e e e et e e e e e e e ————eeaeae e e et t————ataaaeaeaaaaaaraaaaaaaeeaaaannns 42
Scope of Variables; Permanent vs. Local Symbolscocoooiiiiieeee, 43
Data Types RevVISILed.............ccoooeeiiiiiieeeeeeeeeeeeeeeeeeeeeeee e 44
SAS Statements Accepted by SASAecCOderccvvviiiiiiiiiiiiieeee e 45
Variable _LLISESoooooiiiiiiiii et e e e e ettt e e e e e et e e e e e e e 46
Limited_Variable LLISEScoooiiiiiiiiiiiiiiie ettt e e et e e e e e e e 48
Limited_simple_integer eXpPresSSIONS.............ccoooeeiiiiiiiiiiiiiieieeeeeeeeeeeeeeeee e e e e e e e e e 48
The COMMENT Statementcoocouiiiiiiiiiiiiiiiiie ettt e e e ettt e e e sbaeeeeenbaeeaeenes 49
The DATA Statement.............coooiiiiiiiiiiiii ettt e e ettt e e e et eeeesebbeeaeenbaeeeeenes 49

The RUN SEAtEINEINT..........ooiiiiiiiiiiie ettt et e e et e e et e et e et s esaeesaeeennneenns 50

The FILENAME Statement..................coooiiiiiiiiiiiiiiiiiicciiieeee e e e eeceittee e e e e e e e e eetaaaseeeeeeeeeennns 50
The LIBNAME Statementoooooiiiiiiiiiiiiiiiiiieccciieee e e e et e e e e e e e e eeraraaeeeeeeeeeennns 51
The INFILE Statement ..o as 52
The INPUT StateIment ... nas 54
The LABEL Statementooiiiiiiiiiiiiiiiiiiccec et e ettt e e e e e e e eaaaaaeeeeeeeeeenanns 55
The PROC Statementcoooiiiiiiiiiiiiiiiiit ettt e e ettt e e e et eeeeenbeeeeeenbaeeaeenns 55
The VALUE Statement.............coccuiiiiiiiiiiiiiiiiii ettt e ettt e e e ettt e e e st eeeeenbaeeaeenes 56
The FORMAT Statementooooiiiiiiiiiiiiiiiiiie et e e e et e e e e e e e e eetaraaeeeeeeeesennnns 57
The INFORMAT State@mentccoooiiiiiiiiiiiiiiee e e e e eeeeiraee e e e e e e e s eeraraaeeeaeeeeeennns 58
The LENGTH Statement...................ooooiiiiiiiiiiiiiiiiiiec et e e et e e e e e e e e eeraraseeeaeeeeeenens 60
The ATTRIB StateIMENtccoiiiiiiiiiiieeeeeeeeeeeeeeeeeee et eeeeeeeeeeeeeeeeeeenns 60
Input Specifications — INtroduction......................ccooiiiiiiiiii e 62
Input Specifications — Briefly Enumeratedccocciiiiiiiiiiee e, 62
Input Specification —in Detailcooiiiii e 64
Input Specifications for Pointer Controlccccoiiiiiiini e, 64
Input Specifications for Variablesc.cccooiiiiiiii e 69
Grouped_format_LiStSooiiiiiiiiiiieee e e e e e e e e 71
Informats in Input Specificationsccccoooiiiiiiiiii e 74
Format MOIfIErsocciiiiiiiiii ettt e e e e 77
Storage Length Revisitedooooiiiiiiiiii e 77
Content of the QUEPUL Files ... 79
Content of the Qutput File — Stataccccoiiiiiiii e 79
Content of the Qutput File — Stat/Transfer..................ccoooiiiiiiiiiiiii e, 81

| 00§ (1) PP PPUTRRRRUPPPP 82
LAMIEEATIONSooiiiiiiiiiiiice ettt e e e e e ettt e e e e e s sttt e e e e e eeesesnaabeeeeas 83
INOtable OMUSSIONSooooiiiiiiiiiiiie ettt e e e ettt e e e e ibb e e e e eabteeaeenbaeeeeennees 84

Preliminary Notes
What’s New - Version 6.2 to 6.3

Version 6.3 introduces the following features:

collapse_at_plus option

posl_linemove option

string literals span lines, following SAS behavior

comment lexing/parsing conforms to SAS behavior

macro comments

limited_simple_integer_expression for / + # pointercontrol

variables in the INPUT statement need not be unique.

ranges of existing variables, ranges of numerically-suffixed names, and predefined
wildcards allowed in variable lists; a limited set of these are allowed in the INPUT
statement

e grouped format lists in the INPUT statement; also, format multipliers

e corrections made to the handling of @ and + pointercontrol

e corrections made to the computation of implicit positions in the presence of format
modifiers

Updates

Users should check with Essistant Software for updates — www.essistant-software.com

User Feedback

The author would appreciate hearing from users regarding how useful and helpful they find
SASdecoder to be, what features they find most useful, and which interface they use most often.
Please send your comments to techsupport@essistant-software.com, or write to this same
address to report if...

SASdecoder fails to perform, or crashes or hangs, or issues an internal error;

you believe SASdecoder perfoms incorrectly;

you believe there is a SAS feature that hasn't been accommodated but could and should be;
you believe that this documentation is faulty or difficult to use or understand;

you have any other suggestions for improvements or corrections to either the SASdecoder
program or this documentation.

Additionally, the author seeks help in understanding the use of commas in grouped format lists in
INPUT statements. If any users can clarify this matter, it would be greatly appreciated.

Introduction

Uses and Capabilities of SASdecoder

SASdecoder is a utility that can translate certain forms of SAS code into Stata dictionaries, Stata
do-files, and Stat/Transfer schema files. The scope of SAS statements it can accept includes limited
features of INFILE, INPUT, LABEL, PROC FORMAT and several other related statements that
are used in specifying how raw data files are to be read.

SASdecoder runs on PCs under Windows. It has been tested on Windows XP, Windows Vista, and
Windows 7. Its Stata do-file and dictionary output can be used on any system that has Stata
installed. Its Stat/Transfer schema output can be used on any system that has Stat/Transfer installed.
Thus, the output can be used on a broader variety of machines than can run SASdecoder (e.g.,
Macintosh and Unix-based). That is, given a successful run of SASdecoder, the output can be
copied to and used on a broad variety of machines.

SASdecoder was created in response to a situation that is common among some data analysts: You
are given a raw data (text) file, along with SAS code (a “SAS System Program”) to read it into the
SAS internal form, but you do not use SAS. It can provide a significant advantage when used on
very large SAS source files — ones that are too large to translate clerically.

It is important to understand that SASdecoder does not read the data; it gives you the tools to read
the data using Stata or Stat/Transfer. Furthermore, SASdecoder does not translate other SAS data-
management operations such as MERGE, nor does it translate analysis procedures such as FREQ,
UNIVARIATE or TABLE. (It does, however, translate VALUE statements to value label
definitions.) Finally, it does not convert SAS data; users who need conversion of data should use a
conversion facility such as Stat/Transfer (see www.circlesys.com).

It is important, also, to understand that, due to these limitations, SASdecoder cannot accept most
SAS programs as given. You will need to edit the program down to the essential parts that are
relevant for data-reading. See More on What SASdecoder Can Do for more on this topic.

Stata and Stat/Transfer Output

For Stata users, it can generate a Stata dictionary, and optionally, a corresponding do-file. You
must have Stata software to be able to make use of these files. See www.stata.com for more
information.

For users of other data formats, it can generate a Stat/Transfer schema file, which can be used to
convert the raw data into a multitude of formats (though the range of SAS input is somewhat
restricted, as will be explained below). To use a Stat/Transfer schema file, you must have
Stat/Transfer software, available from Circle Systems (www.circlesys.com), and your targeted
data format must be among those generated by Stat/Transfer. Presently (in Version 11),
Stat/Transfer supports these data formats; thus, with a valid schema file, the data can be read into
any of these formats:

1-2-3

Access (Windows version only)
ASCII - Delimited

ASCII- Fixed Format

dBASE and compatible formats
Data Documentation Initiative (DDI) Schemas
Epi Info

Excel

FoxPro

Gauss

HTML Tables

JIMP

LIMDEP

Matlab

Mineset

Minitab

MPlus

NLOGIT

ODBC (Windows and Mac versions only)
OpenDocument Spreadsheets
Paradox

Quattro Pro

R

RATS

SAS Data Files

SAS Value Labels

SAS Transport Files

S-PLUS

SPSS Data Files

SPSS Portable

Stata

Statistica (Windows version only)
SYSTAT

Triple-S

See www.circlesys.com for more information.'

! Stat/Transfer also supports OSIRIS and SAS CPORT, but they are read-only. Data Documentation Initiative (DDI)
Schemas, MPlus, OpenDocument Spreadsheets, and RATS are new additions as of version 11; they are not supported
in version 10 or earlier.

A Synopsis of What SASdecoder Can Do

The SAS INPUT statement allows these forms of input:
e column input
e formatted input
e list input
® named input

SASdecoder can handle all but the named input form.
Examples:
1, column input?:

DATA;
INFILE "famincOl.dat";

INPUT

IDO1 1-4 FIPS_STN 5-6

FAMINCO1l 9-15 TXHWO01l 16-22 TRHWO1l 23-29
TXOFMO1 30-35;

LABEL

ID01="2001 INTERVIEW NUMBER"
FIPS_STN="FIPS STATE NUMERIC CODE"
FAMINCO1="TOTAL FAMILY INCOME 2000"

TXHWO1="TAXABLE INCOME HEAD AND WIFE 2000"
TRHWO1="TRANSFER INCOME OF HEAD AND WIFE 2000"
TXOFMO1="TAXABLE INCOME OTHER FAMILY MEMBERS";

This would be translated into this Stata Dictionary:

dictionary using famincOl.dat {

_column(1) int id01l %4s "2001 INTERVIEW NUMBER"

_column(5) byte fips_stn %2s "FIPS STATE NUMERIC CODE"

_column(9) long famincO0l %7s "TOTAL FAMILY INCOME 2000"

_column(16) long txhwOl %7s "TAXABLE INCOME HEAD AND WIFE 2000"
_column(23) long trhwOl %7s "TRANSFER INCOME OF HEAD AND WIFE 2000"
_column(30) long txofm0Ol %6s "TAXABLE INCOME OTHER FAMILY MEMBERS"

}

...or to this Stat/Transfer schema file:

file famincOl.dat

 This example is excerpted from the Panel Study of Income Dynamics Family Income-Plus supplement files:

psidonline.isr.umich.edu .

variables
id01 1-4 {2001 INTERVIEW NUMBER}
fips_stn 5-6 {FIPS STATE NUMERIC CODE}
faminc0l 9-15 {TOTAL FAMILY INCOME 2000}
txhwOl 16-22 {TAXABLE INCOME HEAD AND WIFE 2000}
trhwOl 23-29 {TRANSFER INCOME OF HEAD AND WIFE 2000}
txofm01l 30-35 {TAXABLE INCOME OTHER FAMILY MEMBERS}

2, Formatted input’:

INPUT
@1 CASEID $15.
@18 v000O $3.

@21 v0o01l 8.0
@29 v00z2 4.0
@33 v003 3.0

14

This would get translated into these Stata Dictionary elements:

_column(1) strl5 caseid %15s
_column(18) str3 v000 %3s
_column(21) long v001 %8f
_column(29) int v002 %4f
_column(33) int v003 %3f

...or into these Stat/Transfer schema elements:

Variables
caseid 1-15 (A)
v000 18-20 (&)
v001l 21-28
v002 29-32
v003 33-35

3, List input:

INPUT
name $ age earnings;

gets translated into these Stata Dictionary elements:

str8 name %s
float age %f
float earnings %f

* Excerpted from the zwir31rt.sas file from Demographic and Health Surveys; www.measuredhs.com

...or to these Stat/Transfer elements:

name (A8)
age (F)
earnings (F)

In a typical SAS program that reads raw data, only one input form is used, but it is possible to have
a mixture of the forms, in which case, the output, either a Stata dictionary or a Stat/Transfer
schema, will be created with a corresponding mixture of specification types. But in the case of a
StatTransfer schema, it will not be valid; a Stat/Transfer schema may contain list-input variables,
provided that it is the only input type used — i.e., all variables are list-input. However, as noted,
most real-world examples use only one input form, so this is not expected to be a serious limitation.

In typical use, the SAS code is a given entity — already written and tested by SAS programmers. It
is not intended for you to write SAS code for SASdecoder to translate.”

More on What SASdecoder Can Do

It is important to understand that SASdecoder accepts only a limited set of features of a small
subset of SAS statements. Furthermore, there are limits to its capability to produce Stata or
Stat/Transfer files that emulate the behavior of SAS. Partly, the limitations correspond to the
intrinsic capability of Stata and Stat/Transfer to emulate SAS features, regarding the reading of raw
data.

SASdecoder is designed to accept those SAS features that specify the reading of raw data files, and
only a certain subset of these features can be translated to either a Stata dictionary or do-file or a
Stat/Transfer schema. Furthermore, not every translatable SAS feature has been accommodated to
date (see the Notable Omissions section), but much effort has been put into accommodating most
of what you are likely to encounter.

Usually, a SAS program that was written for reading raw data cannot be used as-is by SASdecoder,
but it still may be usable. You may need to edit- or comment-out certain parts of the file — features
that SASdecoder doesn't understand, but which are not essential to the task of translation to Stata or
Stat/Transfer. You may also need to rename some identifiers, such as those that are illegal as Stata
variable names. It may take several iterations before this succeeds; you may want to use the
“Dryrun” button or dr yrun command (or omit the output file specifications) until you achieve a
successful parsing of the SAS code. Also, you may want to do your editing in a separate copy of
the SAS code file (saved under a distinct filename); you would do your editing in one file and keep
the other in its original state for safekeeping and reference purposes.

Also, the output of SASdecoder may not always be precisely what you need, and you may want to
adjust it as you see fit before using it. And it may need some tweaking to run satisfactorily. So you
should consider it a starting point rather than a completed product.

* While that is not the intent, it is certainly possible to do. This might be instructive to someone with SAS skills to learn
about Stata dictionaries or Stat/Transfer schemas.

10

Some SAS features cannot always be translated exactly into Stata or Stat/Transfer; some translate
to code that is as close as possible, but may not produce exactly the same results. Sometimes this
depends on the form of the raw data involved. Usually, warnings will be issued in these situations.

Using the Output

If you are using this, then presumably you know to use a Stata dictionary and do-file, or a
Stat/Transfer schema file. But, for instructions on these matters,

e Stata users should see “infile (fixed format)” in the Stata Data Management Manual, or type
help infile2 inthe Stata command window. Stata users can also make use of the do-
file option, which will include the appropriate infile command. Also, see the do
command in the Stata Reference Manual, or type help do in the Stata command window.

o Stat/Transfer users should read about schema files in the Stat/Transfer documentation.

Briefly, for Stata users, once you have the dictionary, you subsequently use it inan infile
command. Thus, assuming that the dictionary is named famincO1.dct, you might issue this
command in Stata:

infile using famincOl

This is the simplest use of a dictionary; you may wish to add certain options or qualifiers as you see
fit. Note that in case the dictionary does not name a raw data file, you must name it in the using
option of the Stata infile command:

infile using faminc0l, using(famincOl.dat)

Note, too, that SASdecoder can generate this code by using the do-file feature. Under this scenario,
a do-file would be generated that contains this code; assuming that the do-file is named
famincO1.do, you would issue this command in Stata:

do famincO1l

Stat/Transfer users would use the “ASCII - Fixed Format (Stat/Transfer Schema)” option in the
“Input File Type” specification in the “Transfer” tab on the menu. You can also use the
Stat/Transfer Command Processor; specify the schema file as input to the COPY command. See the
Stat/Transfer instructions for more information on this.

IMPORTANT NOTE REGARDING Stat/Transfer: The Stat/Transfer schema file (or the SAS
file, prior to translation) may need some adjustment in order for Stat/Transfer to locate the raw data
file. By default, Stat/Transfer expects the data file to be named filename.dat, where filename is the
name of the schema (minus the .sts extension). Thus, if the schema is named jobhistory.sts, then it
expects the data to be in jobhistory.dat. This can be overridden by a FILE command in the schema
— which SASdecoder usually writes — but the FILE command apparently takes effect only if it
includes the full path of the data file. If your data file is jobhistory.txt, and your file statement says,

file jobhistory.txt

11

then this file statement is not sufficient. The filename needs to be fully specified; it might read...
file c:\project22\testing\jobhistory.txt

This is true, even if your current directory is c:\project22\testing\. Note that Stat/Transfer will
accept either forward- or back-slashes as directory separators; the prior statement could also be
written as,

file c:/project22/testing/jobhistory.txt

Finally, note that there is a difference between the action of the Stata do-file and the Stat/Transfer
schema file: the Stata do-file, as created by SASdecoder, does not include commands to save the
dataset. It is left to the user to amend the do-file so as to save the dataset if desired, or to manually
issue a save command. (For more on this, see the Stata save command in the Stata Data
Management manual, or type help save in the Stata command window.) By contrast,
Stat/Transfer naturally saves a data file when it successfully processes a schema file.

More about the Do-File and the Stat/Transfer Schema File: Value Labels

The Stata do-file has two purposes. As mentioned earlier, it provides the infile command that
makes use of the dictionary file. But most Stata users would know how to formulate this command,
so this is not of great value. The other use of the Stata do-file is to provide value labels and the
commands to assign them to variables. These value labels come from SAS VALUE statements.
Thus, for example, the SAS code...

PROC FORMAT;
VALUE SEXLABEL 1="Male" 2="Female";

DATA;
INFILE "famincOl.dat";

FORMAT SEX SEXLABEL.;

INPUT
IDO1 1-4 SEX 5;

will result in a do-file that contains, in addition to the infile command, the following code to
define and assign a value label:

#delimit ;

label def sexlabel
1 "Male"
2 "Female"

#delimit cr

label val sex sexlabel

12

The Stat/Transfer schema file will also include features to create value labels. Thus, this same
example will generate the following Stat/Transfer schema code.

file famincOl.dat

variables
id0l 1-4
sex 5 \sexlabel

value labels

\sexlabel
1 "Male"
2 "Female"

Notice that for Stata, the data-reading specifications and the value label definitions (if any) are in
separate files; for Stat/Transfer, they are all in one file.

Sample Files

The installation package comes with a set of sample SAS file that you can try. The version 6.3
includes the following files:

Sample(01.sas — demonstrates column input

Fam1971_short.txt — data for use with sample0O1

Sample(02.sas — demonstrates formatted input and value labels
Sample(03.sas — demonstrates list input and grouped format lists

Users should check the readme file sasdecoder6readme.txt (which is part of the installation) or
examine the contents of the installation directory to see what sample files are actually be present.

These files should be found in the same directory as the SASdecoder software was installed,
typically “c:\program files\sasdecoder6” (‘“‘c:\program files (x86)\sasdecoder6”” on Windows 7).

Important note: you should not write your output to this directory when running these sample
files. Instead, direct the output files to some other appropriate directory of you choosing or one
which you have created for this purpose. (You should either specify the desired output directory
explicitly, or control the current directory using the cd command or by browsing to it.) Possibly the
best course of action is to copy these sample files to your chosen directory and to work entirely
within that directory.

In case you should (accidentally) attempt to write your output to the installation directory under
Vista or Windows 7°, it will go to an alternative directory, which may cause confusion. This
alternative directory will look like

> This behavior does not occur under Windows XP, but it is still a good idea to not write to or modify anything in the
installation directory.

13

“c:\users\username\appdata\local\virtualstore\program files\sasdecoder6”
or

“c:\users\username\appdata\local\virtualstore\program files (x86)\sasdecoder6”.°

Thus, under Vista or Windows 7, you may think you have written your output file into “c:\program
files\sasdecoder6” or “c:\program files (x86)\sasdecoder6”, and you will have every indication that
you did, but when you go to look for it, it won’t be there; it will, instead be in alternative directory
shown above’. This information is provided to help you in case you have attempted to write a file
into the installation directory; it is best to avoid the issue and use a distinct directory for testing the
sample files.

Another important consideration: for Stat/Transfer users, you may need to adjust the filename in
the FILE statement. Please see the section headed IMPORTANT NOTE REGARDING
Stat/Transfer in the Using the Output section.

% The latter form is seen under Windows 7. Such a directory may get created at the time you first create a file located
therein.

7 What is nominally one directory is a pair of distinct directories: one for reading, one for writing.

14

Activation and Running

Activation

After installation, SASdecoder requires an activation step in order to enable its full functionality.
Prior to activation, SASdecoder will run in “Demo Mode”, which allows users to try SASdecoder —
to see what it can do, and to evaluate whether to purchase an activation license. In Demo Mode,
SASdecoder will omit some of the variable specifications and value label elements, but it functions
the same as an activated edition in all other respects.

In Demo Mode, approximately one out of four randomly chosen variables and value label elements
are omitted, and you are limited to 50 variables and 30 value label elements per data step. But you
always get the first three variables in every data step and the first two value label elements per
value label. Please see Special Note about Variables that are Commented- or Edited-Out for
important cautions that apply when variables are omitted.

Every time SASdecoder starts, it checks to see whether it has been activated. If not, it presents you
with the option to activate; if you decline, it will continue in Demo Mode. Within the same
SASdecoder session, you can subsequently activate your SASdecoder by...

e pressing the “Activate” button on the “About” tabbed panel in the Windows Interface; or

¢ typing the activate command in the Command Interface.

You can also wait for the next time you start SASdecoder, when you will, once again, be presented
with the option to activate.

Activation requires an activation code, which you should have obtained when you purchased
SASdecoder. Or if you have been using a free demo copy of SASdecoder, you can purchase an
activation code from your SASdecoder software source — either Circle Systems or Essistant
Software; please refer to the contact information at the beginning of this document.

Activation requires an Internet connection at the time you are activating. Once your SASdecoder is
activated, it should remain activated perpetually, and there is no need for an Internet connection
thereafter. Users who do not have Internet access should contact their software source (Circle
Systems or Essistant Software) to make other arrangements.

When you initiate the activation process, a separate screen will appear, asking for the activation
code. (If you are activating from the Command Interface, you may need to “prod” your computer to
make that screen appear, especially if you were running SASdecoder in full-screen mode.® You can
switch in and out of full screen mode with alt-enter; you can switch processes by pressing the
Windows key or alt-esc.)

During the activation process, you will be asked for a password — one that you are establishing at
this time. Please retain this password for future reference. It is used in case you need to reactivate

¥ Full screen mode is apparently not supported in Vista and Windows 7.

15

your SASdecoder license at a future time — such as if you install SASdecoder on another computer,
or if your operating system gets reloaded and you reinstall SASdecoder. During this process, you
can also optionally provide an email address. This is useful in case you need to reactivate your
software, but forgot your password; you can have it emailed to you.

Your activation code is valid for up to two activations — so you can, for example, have SASdecoder
on your office and home computers under one license. Installing SASdecoder on a second
computer is considered as a reactivation.

If you have trouble with the activation process, please contact techsupport@essistant-
software.com for assistance.

Running SASdecoder

There are two avenues for running SASdecoder:
e Via the Windows interface

¢ Via the Command interface (the “Console Interface” or “Console Application”)

Either one is just as good as the other; the choice is a matter of your preference. They are two
interfaces to the same underlying algorithms for reading SAS code and creating the translated
output.

Running SASdecoder via the Windows Interface

The Windows Interface can be launched by clicking the SASdecoder icon in the SASdecoder6
submenu of the system’s Program Menu, or from a SASdecoder icon on the desktop

The SASdecoder Windows Interface has three tabbed panels with these labels:

Decode
e More Options
e About

Most of the action will occur in the Decode panel. The More Options panel provides control of
some rarely-needed options which can be ignored in most uses. The About panel reports some
information about your edition of SASdecoder and its activation status. It also provides the option
to activate, if your SASdecoder software is not already activated. (See the section on Activating
SASdecoder for more on this subject.)

16

The Decode Panel appears as follows:

SASdecoder

Decode l Mare Dptions] About]
Current Dir: C:\davidkzazst0B.3

Input File | browse M
det file | browse| clone | clear
do file | browse| clome | clear
st file | browze MM

W lower case [uze integer types [uze implicit pozitions [~ pozl linemove log to file

[usge doubles [wsge s informats [retain perm symbols

[stars [uze finformats [T collapse &+

Clear Perm Symbaolz Frestore Default Dptions Clear Log Screen

Progress Log

The Decode panel has four edit boxes for file names:

¢ Input File (i.e., the SAS file)

® dct file (the Stata dictionary file)

e do file (the Stata do file)

e sts file (Stat/Transfer schema file)

The Input File is the existing SAS file that SASdecoder is to read. The other files are those that are
to be created: the Stata dictionary file, the Stata do file and the Stat/Transfer schema file. The Input
(SAS) File is opened for reading when you press the Go button; the others are created when you
press the Go button. The latter three files are all optional; SASdecoder will write whichever of
these you specify — or none if you don’t specify any of them.

For any of these file specifications, you can type them directly into the edit boxes, or you can
browse for them by pressing the “browse” buttons to the right. For the output files, there are also
“clone” buttons to the right, which invoke clone-source-file-name actions. This can help save you
from having to retype a lot of text, assuming that your output names will be patterned after the
input file name. E.g., if your input file is c:\bigproject\abc.sas, the “clone” buttons will create the
names c:\bigproject\abc.dct, c:\bigproject\abc.do, and c:\bigproject\abc.sts. The name-patterning
operations use the existing Input File name at the time the “clone” buttons are pressed.

There are also “clear” buttons on the far right which clear the edit boxes.

17

Above the Input File edit box is a line that displays the current directory. This is useful information
if you type a file name into an edit box without its full name qualifications, e.g., abc, rather than
c:\bigproject\abc. Note that you can change the current directory by browsing into the desired
directory and selecting a file. Also note that the typical initial directory is the place where
SASdg:coder is installed, such as ‘“c:\program files\sasdecoder6”, which you should not use for you
work.

Further down on the right side are the “log to file” and “close log” buttons. The “log to file” button
opens a file that will record whatever is written to the Progress Log screen. It opens a dialog box to
select the file name; the default file extension is .log. If the file already exists, you have the option
to overwrite it or append it. Also note that the log file is opened at the time you specify it, whereas,
the others are opened when you press the Go button. The “close log” button closes the log file.

Filename will generally be appended with corresponding extensions (.sas, .dct, .do, .sts, and .log) if
those extensions are not explicitly stated. (This action occurs at the time the files are opened.) If
any of the filenames need to be taken “as-is”, that is, without the extension, simply append a period
to the name. The period will not used in the file name, but it signals that you want the rest of the
name taken as-is. '’

Below the filename edit boxes are a set of checkboxes for various options. These are, by default,
unchecked (i.e. off), except for lower case.

e Jower case — writes variable names in lower case; default is on, i.e., it is pre-checked. If this
is unchecked, then all variable names will be written in upper case.

e use doubles — (Stata only) uses double, rather that float, as the general numeric type.

e stars — comments-out all variable specifications. Please see Special Note about Variables
that are Commented- or Edited-Out for more information on this matter.

e use integer types — (Stata only) uses integer types (byte, int, long) for all numeric variables
that are read from fixed-width fields with no implied decimals.

¢ use s informats — (Stata only) uses the %s %infmt for numeric variables with no implied
decimals.

¢ use f informats — (Stata only) uses the %f %infmt for character variables.

¢ use implicit positions — calculates and uses implicit positions where possible, for variables
without a specific starting position.

¢ retain perm symbols — specifies that permanent symbols (value labels, filename, libname)
are retained between parses.

e collapse @+ — specifies that a sequence of @ and + pointercontrol elements will be
converted to a single @; thus @7 +3 will be taken as @1 0. Control of this option is relevant
for Stata only; it is always on for Stat/Transfer.

e posl Linemove — specifies that whenever a change of line occurs as a result of # or /,
pointercontrol then a start position of 1 is imposed.

On the More Options tabbed panel there are also these options:

? In Vista and Windows 7, you will be prohibited from working there. More on this under Sample Files.
' Any combination of one or more trailing spaces or periods will be stripped; they are illegal at the ends of filenames
in Windows.

18

® nostop — (Stata only); specifies that SASdecoder will not stop writing the .dct file if internal
errors occur.

¢ Jookupstr method, with a set of radio buttons labeled “none”, “exact”, “partial” and “full” —
sets the lookupstr value; see the section headed Options for an explanation. The
default/recommended value is “exact”.

Please refer to the Options section for more details on these options.

Returning to the Decode panel, below the options is a set of buttons that invoke actions:

e Go — parses the SAS (Input) file; potentially writes .dct, .do, and/or .sts files, if they were
specified.

® Dryrun — parses the SAS (Input) file; does not write any files.

e Reset — resets the Decode window to enable another parse; retains file names.

e Reset/Clear — resets the Decode window to enable another parse; clears all file names
except for the log file.

® (Clear Perm Symbols — removes any permanent symbols (value labels, filename, libname)
that may be remaining from a prior parse; this is relevant if you choose the retain perm
symbols option.

e Restore Default Options — restores all options to their default values. This applies to the
options on the More Options tabbed panel as well as the present (Decode) panel.

® C(Clear Log Screen — clears the Progress Log list box. Note that this has no effect on the
copying of the Progress Log screen to a text file

Finally at the bottom there is the Progress Log list box, where various messages are displayed,
reporting the actions completed and any error or warning messages generated in the parse. As noted
above, you can have this saved to a file by using the “log to file” button. You can also select lines
using standard mouse and keyboard actions; then press ctrl-C or ctrl-Insert to copy the selected
lines to the System Clipboard, and subsequently paste it into another Windows application.

To use SASdecoder, you would specify (or browse for) a SAS file in the Input File edit box. You
can then specify Stata dictionary and/or do files, or a Stat/Transfer schema file. (You could also
specify Stata and Stat/Transfer files together, if you want.) You then can press Go; the output files
will be created, and, if the SAS file is successfully parsed, the output files will be filled in.

In actual use, you are likely to encounter some errors in the first attempts at parsing a file, and you
may need to alternately edit the input file and parse it until the errors are cleared up. In this
scenario, it is appropriate to use Dryrun rather than Go, until the errors are cleared. The Dryrun
button is equivalent to the Go button, but ignores any output files than may be specified;
SASdecoder will still attempt to read the SAS file, but it won’t create any output. However, these
file specifications are “waiting” for when you press Go. Alternatively, you could omit the file
specifications until you get a successful parse. But the Dryrun facility allows you to set up the
output specifications at the start. You then switch to Go, once you are getting an error-free parse.

The editing would need to be done in a separate window, using an editor of your choosing, as there

is presently no built-in provision for editing. You can keep both the editor and SASdecoder
processes active concurrently and switch between the two. Each time you press Go or Dryrun, the

19

latest saved edition of the Input File is opened, so this method will work as long as you save the file
(from the editor) before switching to SASdecoder and pressing Go or Dryrun.

When creating the output files, if any of them already exist, you will be queried as to whether to
overwrite them, or cancel the operation.

Running SASdecoder via the Command Interface

The Command-Interface (or Console) version of SASdecoder runs in a Command Prompt window
(or in full-screen mode, if you prefer, and if that option is available on your system). This allows
users to invoke SASdecoder features by typing commands, which may be of value to some users
who prefer that mode of controlling an application.

The Command-Interface can be launched by clicking the SASdecoder Command Interface icon in
the SASdecoder6 submenu of the system’s Program Menu. Or, you can run sasdecoder.exe from an
existing Command Prompt window.

The Console Interface accepts a set of commands that tell SASdecoder what file to read, what files
to produce, and what options to use in the process of doing its work — much the same as the
Windows Interface, except that it is command-driven. The basic process is to specify the files and
options; then give it the go or dryrun command to initiate a parse of the SAS file — equivalent to
the go and dryrun buttons on the Windows Interface. You can then make changes and do another
parse, or you can end the session by typing exit.

The commands are listed below. Entries in [square brackets] contain a list of items separated by the
vertical bar (1), representing a set of items from which you can choose one. The square brackets and
vertical bar are not to be typed. Where such a list occurs as the first syntactic element, it indicates
command synonyms; where it appears as an option name, it indicates option synonyms. Items in
italic font represent entities that are to be substituted by an actual value.

Some commands are for specifying filenames. Filenames can be quoted, and they must be quoted if
they contain spaces or other specific characters not “traditionally” used in filenames.

Filenames will generally be appended with corresponding extensions (.sas, .dct, .do, .sts, and .log)
if those extensions are not explicitly stated. (This action occurs when the files are opened.) If any of
the filenames need to be taken “as-is”, that is, without the extension, simply append a period to the
name. The period will not be used, but it signals that you want the rest of the name taken as-is."'

Commands are case-sensitive; they are all in lower case.

Note that the edit keys — Insert, Delete, Home, End, Page Up, Page Dn, Backspace, F2, F3, F4, F7,
F8, F9 — are available for recalling and editing commands, just as in the system Command Prompt;
the list of recallable commands is separate from that of the Command Prompt (if you invoked the
SASdecoder Command Interface from the Command Prompt).

" Any combination of one or more trailing spaces or periods will be stripped; they are illegal at the ends of filenames
in Windows.

20

Note

exit — ends/exits the program. If you launched the Command Interface by clicking the
shortcut, then the application will close.

[help | ?] —displays a brief help sequence.

log using logfilename — opens a file to record the commands and resulting messages;
essentially it copies what appears on your screen.'” If the file already exists, you have the
option to overwrite it or append it. Also note that the log file is opened at the time you
specify it, whereas, the others are opened when you give the go command.

log [close cl] —closes the log file if it is open.

1log — (no arguments) reports the currently open log file name.

[sasfile | sas] sasfilename — specifies the SAS file.

[dctfile | dct] dctfilename — specifies the dct (Stata dictionary) file.

[dofile | do] dofilename — specifies the do (Stata do) file.

[stsfile | sts] stsfilename — specifies the sts (Stat/Transfer schema) file.

: if any of these filename commands are given without an argument, then the existing value of

the corresponding filename is reported. Also, for dctfile, dofile, stsfile, and 1og
using, an argument of an asterisk has special meaning: it clones the sasfile name. Thus, for
example, if the sasfile name is abc . sas, and you type sts *, then you get abc. sts as the
stsfile name. "

The sasfile is opened when you issue the go or dryrun commands. The dctfile, dofile, and stsfile
are created when you issue the go command. The latter three files are all optional; SASdecoder
will write whichever of these you specify — or none if you don’t specify any of them. The log is
opened when you issue the 1og using command.

go — parses the SAS file named by the sasfile command; potentially writes .dct, .do, and/or
.sts files, if they were specified.

dryrun — parses the SAS file named by the sasfile command; does not write any files.
clear — clears all the filenames except the log file. To clear a single filename, give the
corresponding command with a quoted null string argument, as in dctfile ""

files —reports the names of the files you have specified, except the log file.

about — reports information about the SASdecoder program.

activate — invokes the license activation process. (See the section on Activating
SASdecoder for more on this subject.)

[clear_perml|clearperm] —removes any permanent symbols (value labels, filename,
libname) that may be remaining from a prior parse; this is relevant if you choose the
retain_perm option.

cd [directoryspecification] — sets the current directory to directoryspecification, provided
that the specified directory exists. Without an argument, it reports the current directory. For
directoryspecification, the usual symbols for relative directories apply: . . signifies the
parent directory; . . \xyz signifies a lateral move to directory xyz, assuming that it exists at

"2 The results of help and activate are omitted.
"> This works if you have already declared a SAS file. Note that you can subsequently change the SAS file name, in
which case the cloned name may no longer be appropriate.

21

the same level as the initial directory; albc moves to the abc subdirectory of the initial
directory, assuming that it exists; abc\xyz moves down two levels to the xyz subdirectory
of the abc subdirectory of the initial directory, assuming that they both exist. (Here, the
“Initial” directory refers to the directory that was in effect prior to issuing this command.)
Essentially this is the cd of the system’s Command Prompt, except that
directoryspecification must be quoted if it contains spaces. Type help cd in the
Command Prompt for more information. If the Command Prompt process remains open
after SASdecoder exits, then, upon exit, the initial directory is restored.

over [directoryspecification] — equivalent to cd . . \directoryspecification — makes a
lateral move in the directory structure, provided that the specified directory exists. Without
an argument, it reports the current directory. See the cd command for more details.

up — equivalent to cd .. —makes an “upward” move in the directory structure. Takes no
argument. See the cd command for more details.

option optionname optionvalue — sets various options, as explained below.

Following are the options. This is a brief description of the options; they will be discussed in more
detail in the Options section. Except as noted, all off/on options have a default value of off.

option — (with no arguments) reports all option settings.

option optionname — (with no optionvalue) reports the setting of the named option.
option default — restores options to their default values.

option lower [off | on]— sets the lower-case option; writes variable names in lower
case; default: on. If this is set to off, then all variable names are written in upper case.
option doubles [off | on] - sets the doubles datatype option (Stata only); uses
double, rather that float, as the general numeric type.

option stars [off | on] - sets the stars option; comments-out all variable
specifications. Please see Special Note about Variables that are Commented- or Edited-
Out for more information on this matter.

option inttypes [off | on] - sets the inttype option (Stata only); uses integer types
(byte, int, long) for all numeric variables that are read from fixed-width fields with no
implied decimals.

option s_infmt [off | on] - sets the s_infmt option (Stata only); uses the %s %infmt
for numeric variables with no implied decimals.

option f_infmt [off | on] - sets the f_infmt option (Stata only); uses the %f %infmt
for character variables.

option implicit [off | on]- sets the implicit-positions option; calculates and uses
implicit positions where possible, for variables without a specific starting position.
option nostop [off | on] - sets the nostop option (Stata only); specifies that
SASdecoder will not stop writing the .dct file if internal errors occur.

option lookstr [nonelexact |Ipartial |l full] - setsthe lookupstr value; see
the section headed Options for an explanation. Default/recommended value is exact.
option more integer_value — sets the more option; specifies how many lines are written
to the screen before pausing. Default= 24. Setting it to 0 will turn off pausing.

22

e option[retainlretain_perm][off | on]- sets the retain_perm option; specifies
that permanent symbols (value labels, filename, libname) are retained between parses.

e option[collapse_at_pluslcollapse@+][off | on]— (Stataonly) specifies that
a sequence of @ and + pointercontrol elements will be converted to a single @; thus @7 +3
will be taken as @10. Control of this option is relevant for Stata only; it is always on for
Stat/Transfer.

e option[posl_on_linemove |lposl_linemove][off | on]— specifies that
whenever a change of line occurs as a result of # or / pointercontrol, then a start position of
1 is imposed.

The SASdecoder Command Interface displays the prompt “—>" to indicate that it is ready to accept
a command. An example of a basic operation would be...

-> sas famdata
-> dct famdata
-> do famdata
-> go

-> exit

This sequence of commands would read famdata.sas, and, assuming no errors were encountered,
would cause famdata.dct and famdata.do to be filled in with the translated output.

If you are a Stat/Transfer user, the basic operation would be...

-> sas famdata
-> sts famdata
-> go

-> exit

...and famdata.sts would be filled in with the corresponding translated output.
(You could also write Stata and Stat/Transfer output together, if you want.)

In actual use, you are likely to encounter some errors in the first attempts at parsing a file, and you
may need to alternately edit the input file and parse it until the errors are cleared up. In this
scenario, it is appropriate to use dr yrun rather than go, until the errors are cleared. The dryrun
command is equivalent to the go command, but ignores any output files than may be specified;
SASdecoder will still attempt to read the SAS file, but it won’t create any output. However, these
file specifications are “waiting” for when you type go. Alternatively, you could omit the file
specifications until you get a successful parse. But the dryrun facility allows you to set up the
output specifications at the start. You then switch to go, once you are getting an error-free parse.

The editing would need to be done in a separate window, using an editor of your choosing, as there
is presently no built-in provision for editing.'* You can keep both the editor and SASdecoder

' Editing in a separate window is a natural consequence of using a Windows-based editor. You can also use a
command-prompt-based editor in a separate Command Prompt window.

23

processes active concurrently and switch between the two. Each time you issue the go or dryrun
command, the latest saved edition of the Input File is opened, so this method will work as long as
you save the file within the editor before switching to SASdecoder and issuing go or dryrun.

(If you launched SASdecoder within an existing Command Prompt window, you could exit
SASdecoder, edit the file in that same window, restart SASdecoder, and continue the process.
However, this is not recommended, as it is slow and cumbersome, and would obliterate any choices
of filenames and options that you have made.)

When creating the output files, if any of them already exist, you will be queried as to whether to
overwrite them — or possibly append them, or cancel the operation.

As is true regarding filenames in general, you may include a directory specification, and you must
include it if the file is not in the current directory. Thus, you could specify,

-> sas c:\bobsstuff\somesasfile

If you don’t give a fully-specified file name (such as somesasfile, rather than
c:\bobsstuff\somesasfile), then you need to be aware of the current directory, which you
can see (or change) via the cd command. Also note that the typical initial directory is the place
where SASdecoder is installed, such as “c:\program files\sasdecoder6”, which you should not use
for you work."

Options

Following are detailed descriptions of the options common to both the Command and Windows
interfaces. These are controlled by the opt ion command in the Command Interface and by
various checkboxes, or radio buttons in the Windows Interface.

option lower on orthe “lower case” checkbox: renders variable names in lower case. This is
the default (and is pre-checked in the Windows interface).

Note that, since SAS variable names are case-insensitive, the rendering of names as either all-
lower-case or all-upper-case does not present the possibility of collapsing distinct names.

If this option is deselected (option lower off or uncheck the “lower case” checkbox), then
variable names will be rendered in upper case. SASdecoder does not presently have the capability
of retaining the original case of variable names.

option doubles on or the “use doubles” checkbox: (Stata only) uses double rather than float
for floating-point variables. Note that most numeric variables are potentially floating point, unless
you specify option inttypes on orthe “use integer types” checkbox.

option inttypes on or the “use integer types” checkbox: (Stata only) uses integer types
(byte, int, or long) for numeric variables that are specified as fixed-width with no implied decimals.

" In Vista and Windows 7, you will be prohibited from working there. More on this under Sample Files.

24

This may or may not be appropriate, depending on the content of your data; you need to know the
nature of your data before deciding whether this option is appropriate. It should be used only if you
are certain that a// numeric variables that are not specified as having implied decimals do not have
any non-integer values in the data. Note that a decimal point in the data will override the no-
decimals specification and generate a floating-point value. But such a value will be truncated if it
the data type of the variable is integer. Thus, indiscriminate use of this option can be hazardous,
and it is safer to not use this option — to use float or double, and to later compress the data in
Stata. Also note that if the width is 9 or more, then the type will always be double, regardless of
other considerations. This does not affect list-input variables. See more on this under Content of
the Output File.

option stars on or the “stars” checkbox: comments-out all variable declaration lines in the
.dct or .sts file. (The name is Stata-oriented, as it comes from the fact that it places asterisks at the
start of each variable declaration line in the Stata dictionary. But this option also applies to
Stat/Transfer schemas as well, using the “/ /”” comment marker.)

This option is useful if there are many variables declared in the SAS INPUT statement, but you
wish to read-in only a small subset of them. You can use this option, and then subsequently edit the
dictionary or schema file and uncomment the lines for the desired variables.

An alternative method is to not use this option, but to cut and paste the desired lines from the output
file into a separate file. This way, instead of using the dictionary or schema file directly, you keep it
as a repository of all possible variables. Your functional dictionary or schema is another, smaller
file, and you copy and paste the desired items from the repository into the functional dictionary or
schema. (You would need to include any line-movement specifications that exist in the output file.)

IMPORTANT: Whether you are using the stars option or pasting from a full file to a sparse one,
some cautions apply. These methods are appropriate for fixed-position variable specifications.
When applied to list-input variables or formatted-input variables without pointer control, care must
be taken to assure that the specifications apply to the correct field locations. Please see Special
Note about Variables that are Commented- or Edited-Out for more information on this matter.

option f_infmt on or the “use f informats” checkbox (Stata only): uses the $wf infmt
(rather than $ws) for character variables.

option s_infmt on or the “use s informats” checkbox (Stata only): uses the $ws infmt
(rather than $wf) for numeric variables with no implied decimals.

The £_infmt and s_infmt options (or the “use f informats” or “use s informats” checkboxes)
seem to specify the use of the “wrong” or “other” infmt type: $wf for character strings and $ws
for numbers. (Here, w stands for a field width.) This may seem odd, but it is possible and
sometimes desirable to use these infmts, especially %s for numbers; it actually may be common
practice. See “String formats” under “infile (fixed format)” in the Stata Reference Manual for more
on this matter.

option implicit on or the “use implicit positions” checkbox: specifies the use of calculated
implicit starting positions. An implicit position is a situation where there is list input or formatted

25

input with no specified starting position, but the preceding variable has a fixed width and a fixed
starting position (either explicitly, or implicitly). For example, in this input specification,

INPUT @3 vl 4.0 v2 6.0 v3 v4;

v1 is read from positions 3-6. v2 has no explicit starting position, but since v1 ends at position 6,
v2 implicitly starts at position 7. Since v2 has a fixed width (6), it ends at position 12, and v3
implicitly starts at position 13. But since v3 does not have a fixed width (is list input), v4 does not
have a definite starting position.

Also note that every INPUT statement that does not follow a hold-the-line specification (a trailing
@), implicitly starts at position 1. Thus, in

INPUT v5 4.0 vo6;
INPUT v7 6.0 v8;

v5 will be read from position 1 (assuming that this is the first input item, or that is not preceded by
a trailing @) and v7 will be read from position 1, but on the next line of input; v6 is implicitly at
position 5 and v8 is implicitly at position 7 (on different lines) . Furthermore, a line-movement
specification, e.g., #2, also starts at position 1. See the section Input Specifications for Pointer
Control for an explanation of these features.

This option will calculate implicit positions and assign them as if they were explicit. Thus, in the
examples above, v2, v3, v6 and v8 will be assigned starting positions of 7, 13, 5 and 7,
respectively. This can have two potential benefits: 1, as mentioned regarding the stars option (or
the “stars” checkbox), this can reduce the possibility of a list-input variable being misread when
some preceding variables are commented out; and 2, it can potentially make more variables usable
in the .sts file. (That is, the .sts file is not valid if it has list input mixed with fixed-position
variables; this option can convert some variables into fixed-position, potentially making the schema
usable if was otherwise unusable.)

option [retainlretain_perm] on or the “retain perm symbols” checkbox: specifies that
permanent symbols will persist from one invocation of the parser to the next . (By an invocation of
the parser, we mean an instance of pressing the “Go” or “Dryrun” buttons, or issuing the go or
dryrun commands.) Permanent symbols include user-defined informats (corresponding to value
labels), libnames and filenames. The default action is to clear these symbols after every invocation
of the parser. If this option is checked or turned on, then these symbols will be retained, rather than
cleared. Thus, a set of value labels defined in one file could be used when parsing a subsequent file.
If this option is checked or turned on, and, after parsing one or more files, you decide that you want
to clear the permanent symbols before the next parse, then press the “clear perm symbols” button
on the Decode panel or issue the command clear_permor clearperm. (Unchecking the
“retain perm symbols” checkbox or turning off this option will not clear the permanent symbols; it
will only set the behavior from that point forward, and the permanent symbols will be cleared after
the next parse.)

26

If you select this option and rerun the same SAS file, you may get messages indicating that some
value elements are already defined. This is just a warning and is to be expected under the
circumstances.

See the section on Scope of Variables; Permanent vs. Local Symbols for more on this matter.

option[collapse_at_pluslcollapse@+] on orthe “collapse @+ checkbox: specifies
that input constructs of @ followed by + will be collapsed to a single @; thus @3 +5 is taken as
equivalent to @8. With this option off, this example would yield Stata dictionary code of
_column (3) _skip (5); with this option on, the result is _column (8) . Control of this option
is relevant for the Stata dictionary only; it is always in effect for the Stat/Transfer schema. See
more on this under the Input Specification — in Detail section.

option[posl_on_linemove |posl_linemove] on or the “posl linemove” checkbox:
specifies that whenever a change of line occurs as a result of # or /pointercontrol, and there is no
specification of an explicit starting position, then a start position of 1 is inserted in the output. Note
that when a line is specified by means of #, or a change of line is specified by / (and, in either case,
there is no explicit starting position specified), then SAS will start reading from that line at position
1. The corresponding Stata or Stat/Transfer code, without any position specification, will also result
in reading data starting from position 1, provided it is not a revisited line (see below). Thus, in
these cases, it is not necessary for the output to explicitly include a position specification. This
option makes that position specification explicit, inserting a position specification of 1 — so you can
be more certain and clear about what is meant. But note that, for Stat/Transfer, the insertion of an
explicit position can be a disadvantage if the rest of the items are list input; you will get a mixture
of list input and specified-position items, which is not supported. Note, further, that when a line is
“revisited” (see below), then SASdecoder will always insert an explicit starting location of 1; this is
necessary because, under this scenario, SAS will read from position 1, whereas, Stata, in the
absence of a _column () specification, or Stat/Transfer (due to how multiple lines are rendered),
will proceed to read a revisited line from where it previously left off. A revisited line is one where
the input specification causes a return to a line that had been previously read from, as in...

INPUT
#1 a #2 b #1 c;

In the above example, c constitutes a revisit to line 1. Also consider the following:

INPUT
a #1 b;

Assuming that a is on line 1, b constitutes a revisit to line 1, even though it is not a change of line;
it is a “move”, but not a change. Also, an additional INPUT statement can result in a revisit, as in
the following:

INPUT

#2 a #1 b;
INPUT

cy

27

Here, ¢ constitutes a revisit to line 2.

Finally, note that if an INPUT statement results in the first variable being read from a “fresh” line —
one not yet encountered — then SAS reads from position 1, and so do Stata, and Stat/Transfer (in the
absence of explicit position specifications). There is no need for SASdecoder to insert a position
specification in these cases.

To recap, these considerations apply to list input only — variables that have no specific starting
position. There are three classes to be considered:

e C(lass 1: An INPUT statement goes to a fresh line.

e C(lass 2: There is line movement resulting from the appearance of # or /, and it is not a
revisit of a line;

e (lass 3: There is line movement via any of the possible methods, and it is a revisit to that
line.

In the translated output, Class 1 does not need and does not get an explicit starting position. Class 2
does not need an explicit starting position, however, one might want one anyway; this option turns
on the insertion of explicit start positions. Class 3 needs and always gets an explicit starting
position.

Rarely-needed Options

The following options should rarely, if ever, be needed by the general user. In the Windows
Interface, these are located on the More Options tabbed panel.

option lookstr [nonelexact |Ipartiallfull] or the “lookstr method” radio group
(with the “none”, “exact”, “partial” and “full” radio buttons): invokes varying methods of saving
space by allowing common textual values to share storage space. exact is the default and is
appropriate for most uses. It would be rare to need to specify this option, as the default is suitable
and adequate for most uses. But choosing one of these (particularly partial or full) may
prevent a string-table-overflow error. Note that the textual values of interest include most textual
values recorded while parsing the SAS code: variable names, variable labels, and many other

entities. ¢

These options constitute a space/speed tradeoff. At one end of the scale, none, there is no space
sharing, but it is the fastest; at the other end, ful1l, there is maximal space sharing, but can take
significant additional time, especially with large amounts of stored textual data. The others are
somewhere in between these extremes. none specifies that no space-saving efforts are to be
undertaken; every character string value is necessarily given a separate entry in the string table.
exact specifies that only exact matches are sought. (Actually, it would take effect only for
character string values in distinct namespaces, for example variables and value labels.) partial
specifies that a newly encountered character string value can share space with an existing one,

' This excludes certain other textual values (value labels, filename, libname) that go in the permanent symbol table.
See the section on Scope of Variables; Permanent vs. Local Symbols for more on this.

28

possibly as an initial substring. For example, “pen” can share space with “pencil”, if “pencil” was
encountered first. full specifies that a newly encountered character string can share space
anywhere in the existing stored characters. This has the greatest capacity for saving space, but is
extremely time-inefficient, especially for large volumes of textual data (i.e., from large input files).
(Its time usage is proportional to the square of the number of characters presently stored.)

Note that these space-sharing methods only work if there are character string values in common,
which is data-dependent. They may save little space in actual practice, but may enable you to get
past a string-table-overflow problem.

option nostop on or the “nostop” checkbox: tells SASdecoder to not stop writing the
dictionary file if internal errors should occur. The default is to stop after the first internal error. This
may enable you to obtain results where you otherwise might not, but the results should be used with
caution, as they may be partly based on invalid or incomplete data.

Special Note about Variables that are Commented- or Edited-Out

IMPORTANT: Whenever variable specifications in a dictionary or schema are omitted (as in Demo
Mode) or commented out (as in the stars option), or cut and pasted, certain cautions apply.
Generally, it is safe to do so for fixed-position variable specifications, though, even then, you must
be sure to be referring to the correct line in multi-line input (i.e., when there are line-movement
specifications). For input that does not specify fixed starting positions (list or formatted input
without pointer control), you need to be sure that the correct starting position will be used.

Suppose you have used the stars option. It would be invalid to un-comment a variable if it does not
have an explicit starting position (by column input or by pointer controls) or does not follow an
uncommented variable that starts at a specific position”. That is, if a variable does not have an
explicit starting position, then it must be preceded by a chain of one or more variables, none of
which are commented out or otherwise omitted, that starts at a specific position or starts at the start
of the data line as list input. (They don’t all need to be in a specific position; you just need one to
start the chain.) If these conditions are not adhered to, then such a variable would likely be given an
erroneous starting position (either fixed or not) because of a gap in the sequence of other variables
that come before it. Commenting-out one or more of those preceding variables interrupts the
sequence that would otherwise determine its proper start position.

Note that this problem can also occur if you manually comment-out some of the variable
specifications, or if some are omitted due to Demo Mode. Furthermore, this principle extends to the
“line number” for data formatted in multiple lines per observation. That is, you should not
comment-out the line-movement specifications. (And you must keep variables within the section
that pertain to their correct line numbers.)

7 A specific position could be due to column input or pointer controls, or it may be at the start of an INPUT statement
(with no preceding line-hold markers (trailing @)) or the first variable after line-movement controls; the latter two
configurations are implicitly at position 1.

29

Note that the use of option implicit on or the “use implicit positions” checkbox can
increase the number of variables that have specific starting positions, thereby possibly reducing the
set of variables that are vulnerable to this problem.

30

Fundamental Data-Reading Concepts

Before further describing the features of SASdecoder and the applicable features of SAS, Stata, and
Stat/Transfer, it will be useful to briefly spell out some of the fundamental concepts of data and the
reading of raw data.

Raw Data vs. Internal Format

Data-handling and analysis facilities such as SAS and Stata typically hold data in their own
proprietary “internal” formats. On the other hand, data sets are often delivered in textual “raw”
form — in text files using printable character representations of all values. “Delivered” may mean
the initial electronic form after the data-collection process, or it may be a form used to store and
transmit data between applications. The process of reading raw data is that of converting from the
textual form to a particular proprietary internal format. For some facilities, such as Stata, there is an
in-memory data-storage scheme and a corresponding proprietary file format. In this scenario, the
process of reading raw data can be viewed as “loading” or “populating” the internal data storage
scheme with values found in the raw data file. You can subsequently write the data to a file, as you
would by using the save command in Stata. Another scenario is where the values in the raw data
file are read and then written directly to file in a proprietary format; this latter method is what
Stat/Transfer does.

Relational Tables

The internal format usually holds data organized in a relational table, that is, a rectangular
arrangement of values. In abstract terms, it is a set of tuples, where a tuple is an ordered list of
values, and where each tuple has the same form: each tuple has the same number of elements
(values), and the corresponding elements in each tuple share a defined meaning in terms of what
they represent. Thus, the tuples can be regarded as repeated instances of a fixed set of identifiable
quantities; each of these quantities can therefore be given a distinct name. With this in mind, each
tuple can be seen as a named list of values, rather than an ordered list; the order of the elements
becomes an irrelevant low-level detail. These identifiable quantities are known as the variables of
the table. Conversely, each variable is a set of values, one for each tuple. The whole set of values
can be viewed as a rectangular array; typically, the tuples are regarded as the rows, and the
variables are regarded as the columns.

Typically, each variable has a fixed data type; more on this later.

In data-analysis parlance, each tuple is an “observation” or a “case” or a “record”'®. Each tuple
typically represents some real-world entity — the “unit of observation” of the table. Each tuple
contains particular values for each variable, corresponding to specific attributes of the entity that
the tuple represents.

'8 “Record”, particularly “physical record” sometimes refers to a line of the raw data file.

31

The Raw Data File; Fields

A raw data file is typically a text file, that is, it is a sequence of textual character divided into lines
(though other arrangements are possible'”). More precisely, a text file is a sequence of lines, where
a line is a sequence of characters.

In the raw data file, each value occupies a contiguous segment of characters, known as a field. It is
almost universal that a field is located within a line; it does not cross line boundaries. The number
of characters in the field is the “field width” (though “field length” would also be appropriate). For
each variable, there are multiple instances of fields holding its values — one for each observation. It
is important to make the distinction between field (in the raw data) and the corresponding value as
stored in the internal form, or even the variable. Sometimes, “field” is used to refer to any of these
entities, but in this document, we will use “field” only for the segments of the raw data file.

The raw data file is usually set up such that either...

e cach line corresponds to one data observation, or
e every m lines (where m is an integer constant) corresponds to one data observation.

However, other possibilities exist.

For any given variable, its fields may have either a fixed or variable starting position within the
lines, and either a fixed or variable width. That is, the starting position and width may be the same
for each observation, or they may vary. Typically, a raw data file is set up so that it has either fixed-
position fields or variable-position (and variable-width) fields for all its variables, but it is actually
possible to mix the two, though that would be unusual.

With variable-width fields, the end of the field is determined by the content of the raw data,
typically, by the presence of a space or other designated character. And often (though not always),
the start of the next field is the first non-space character after that; thus, variable width usually
implies variable positions. More precisely, if there is a variable-width field, then any following
field on the same line, without absolute pointer control, will have a variable starting position. This
variable-width/variable-position form of raw-data placement is known as “list input” in SAS
terminology, or “free format” in Stata.

SAS also has the concept of “formatted input”, which has fixed-width fields, though it does not, by
itself, necessarily have fixed starting positions. But it is often used in combination with pointer
control, thus facilitating another way of specifying fixed-position/fixed-width fields

Storage Length

When the data are converted to the internal form, each value occupies a certain amount of storage
space — the “storage length”. Typically, each instance of a given variable has the same storage
length, and thus we speak of storage length as an attribute of a variable.”

' Some older data files may appear as one long sequence of characters that are implicitly divided into fixed segments;
these require the 1recl feature.
*% This is the case with SAS and Stata, though it is not necessarily so in some other facilities such as Excel.

32

In SAS, the storage length of a variable can be set with the LENGTH or ATTRIB statement, or
may be fixed at the first occurrence of that variable within the data step. This can apply to both
character and numeric variables, though SASdecoder does not pay attention to the length setting of
numeric variables.

It is important to distinguish between field width and storage length. To reiterate: field width refers
to the raw data file; storage length refers to the internal data format. They may easily be confused,
especially for character data, since there is a natural correspondence between the characters in the
raw data field and those in the internal data form. (This natural correspondence does not exist for
numeric variables.) In many typical usages, character variables have equal field width and storage
length (if the field width is fixed). That is, it is appropriate to set the storage length equal to the
field width, assuming fixed-width fields. But this is not necessarily the case in general. There can
be situations where the storage length is greater, in which case the internal storage location is only
partially filled, or where the field width is greater, in which case, the value is truncated (the latter
part of the field value — that which can't fit into the storage location — is discarded). Potentially,
both of these conditions may occur together in the same instance of reading a dataset — possibly in
the same variable, though in different observations. (That could only happen with variable-length
fields, i.e., list input.)

Data Types

In SAS, Stata, and most data-handling facilities, each variable has a fixed data type — the set of
values that may be stored. There are two broad classes of types: character’' (or “character string” or
“string”’) and numeric. Character types can hold textual values, and are distinguished by a fixed
maximal length, which is usually the same as the storage length. Numeric types hold numbers.
Often, numeric types can be divided into integer and floating-point, and possibly further
disaggregated into types such as byte, word, etc.; SAS does not provide for these distinctions, but
does allow some control over the storage length of numeric variables.

21
In some programming contexts, “character” means a single character. In SAS usage, it seems to include character
strings.

33

SAS Language Features Accepted by SASdecoder — the Lexical Level

This section is intended to explain the lexical structure of SAS features that SASdecoder accepts —
the ways that characters are assembled, at the lowest level, into meaningful units, plus some of the
basic features of the structure of statements.

Tokens

A SAS program is a sequence of SAS Statements; a SAS statement is a sequence of “tokens” — the
smallest meaningful segments of text above the level of a single character.

There are several broad types of tokens: identifiers, character string and numeric literals, special
characters, formats and informats. Some, such as the special characters (e.g., $, +, /) are single
characters; others consist of sequences of several characters.

All of this occurs in the context of text files: files that are composed of characters and are
“organized” into lines. There is no significance to the end of a line; a statement ends with a
semicolon, which is not necessarily the end of a line. Thus, a statement continues, possibly
spanning several lines, until the semicolon is encountered. Indeed, certain statements are typically
long and are customarily spread over many lines. There is only one almost-absolute rule regarding
how a statement’s components must be arranged on the lines: a token must be entirely within a line;
it may not be split across lines. There is one exception: character string literals can span lines. The
only other considerations are aesthetics and legibility by human readers.

Practically speaking, SASdecoder has no limit on the line lengths in the source file. (There is a
limit of about 2 gigabytes — practically negligible as limits go. The author is unaware of what, if
any, is the limit for SAS. In any case, this should not be an issue.)

As mentioned earlier, SASdecoder, in accordance with SAS protocols, interprets identifiers —
statement names, option specifiers (e.g. LRECL), and variable names, among others — as case-
insensitive. Variable names will, by default, be rendered in lower case in the output; you can
change this with 1ower option (option lower off), or by unchecking the “lower case”
checkbox. Note that SASdecoder does not preserve the original case of variable names, but this
should not be a significant issue, since SAS is case-insensitive regarding variable names. Thus,
SAS code cannot have two variable names distinguished only by case.

The cases of variable labels or any other character string literals are preserved.

In the following examples and explanations, the words that have special meaning to SAS
(statement names such as INFILE, INPUT, etc., as well as some options) will be written in upper-
case letters, as is traditional in SAS documentation, though, as mentioned, they may be of either or
of mixed case.

Tokenizing

34

The term tokenizing refers to the lowest level of analyzing a program. It is the process of reading a
stream of characters and deciding where one token ends and where the next one begins, as well as
determining the class of each token. Thus, in the following example,

LABEL ID01="2001 INTERVIEW NUMBER";

The tokens are, with each one listed on a separate line,

LABEL
IDO1

"2001 INTERVIEW NUMBER"

.
14

The first two tokens are identifiers; then there is an equals sign, a character string literal (quoted
text), and finally a semicolon.

Whitespace

Tokenizing is the process deciding where one token ends and where the next one begins, but the
next one does not always begin immediately after the end of the present token. Often there is some
“open space” between them. This may consist of one or more instances of space characters, tab
characters, comments (of the /* */ variety), and newlines. (A newline is the concept of the
transition from the end of one line to the start of the next.) These characters and constructs are
collectively known as “whitespace”.

Generally, whitespace may appear (may be inserted) between any two consecutive tokens. There
are some contexts where it is required, as between two identifiers, such as in LABEL IDO1 in the
above example. In other contexts, whitespace is optional, such as between ID01 and the equals
sign in the example. Whitespace is not allowed inside a token; by definition, whitespace is what
may appear between tokens. (Space within a character string literal, that is, within quotation marks,
is part of the token and is not considered whitespace.) Where it is allowed, whitespace may be as
little or as much as you care to insert.

Comments

SASdecoder knows how to skip over comments in the SAS source code, in these four forms
(believed to cover all forms used in SAS):

* any_text_except_a_semicolon ;

COMMENT any_text_except_a_semicolon ;

/* any_text_except_an_asterisk-slash_combination * /
$* any_text_except_a_semicolon_token ;

Note that all of these forms may span lines.

35

The * ; and COMMENT ; forms can go wherever a statement is permitted; they function as
statements, and the second form is known as a COMMENT statement. The two are almost
equivalent — almost equivalent because there is a subtle difference. For a comment that begins with
an asterisk, the signal that ends it is simply the first semicolon that appears. The COMMENT
statement, on the other hand, tokenizes the first token of the statement after the introductory
“COMMENT” command name identifier — and then it searches for a semicolon character.
Consequently, if the first token after “COMMENT” happens to be a character string literal (begins
with a quotation mark or apostrophe), then any semicolons that might appear within that character
string literal will not end the comment; they are not “seen” in the process of searching for the
ending semicolon. Within the COMMENT statement, beyond that first token, no more tokenizing is
performed, and the character stream is scanned for the first semicolon character.”> Thus, you could
have,

COMMENT "a character string literal as the first token past
the command name; with ; embedded; semicolons;" then comes
more text;

The semicolons inside the character string literal are not “seen” in the process of searching for the
ending semicolon. But if such a token appears as the second or later token after “COMMENT”, then
the semicolons within it are seen, and they act to end the comment:

COMMENT some stuff and a "character string literal with an
embedded ; semicolon” and more stuff;

This is not a proper COMMENT statement; the first semicolon — inside the character string literal —
ends the token, because it is “seen”; it is not in the first token past “COMMENT”. Consequently, the
text,

semicolon” and more stuff;
is also seen and is invalid code.

The /* */ style comment can go between tokens — anywhere that a space is permitted. It is not a
token, but is part of the whitespace that is skipped when looking for the next token.”

The final form,

[o)

%$* your comments go here;

is a macro comment; it is part of the SAS macro facility, which, except for the macro comment
feature, is not accommodated by SASdecoder. This comment form is distinct in that the entire
contents of the statement are tokenized, and consequently, the ending symbol is a semicolon token
(a semicolon not within a character string literal). Thus, what was said about semicolons inside a
character string literal if it is the first token past COMMENT in the COMMENT statement applies
here to the all character string literals in the macro comment.

** If the first non-whitespace character after COMMENT is a semicolon, the statement ends there.
% From a formal perspective, in the other comment forms, the asterisk and the COMMENT identifier are tokens, but
the content of the comments are not.

36

To recap,
e acomment beginning with an asterisk is not tokenized
e acomment beginning with COMMENT has the first token past COMMENT tokenized
e a macro comment is fully tokenized
e this form /* your comments go here */is whitespace

It is worth noting that, for any part of a comment that is tokenized, any character string delimiter
(quotation mark or apostrophe) must be balanced by another delimiter of the same type. Note too,
that, since character string literals can span lines, a spurious or missing quotation mark or
apostrophe in a COMMENT statement or macro comment may throw off the reading of the
subsequent text of the program. See Character String Literals for more on this matter.

All forms of comments may span multiple lines.
Comments may not be nested.”*

The /* */ type of comment ends at the first occurrence of */, regardless of any attempted nesting
or enclosure within quotation marks.”

However, a comment using the /* */ form should also not contain a semicolon. Actually,
SASdecoder has no problem with this, but it may cause peculiar behavior in SAS.

The content — what’s inside the comment — is completely skipped by SAS and SASdecoder. There
are two uses for this: 1, to insert comments, i.e., notes to any human reader of the program, and 2,
to hide segments of code — to make them virtually invisible to the code processor, but to not delete
them outright. (You may want them back at a later time, or they are of historical significance.) The
latter use, “commenting out” code, is something you can expect to do in preparing a SAS file for
use by SASdecoder, as there may be features in the original SAS program that are not accepted by
SASdecoder.

Identifiers and Name Space

Identifiers are the “words” used in SAS code. They are used for a variety of purposes, most notably
as variable names, but also as statement names, filenames, and other entities. An identifier is an

**If you attempt to nest /* */ type comments, you will cause the following situation. If you write...

/*a /* b */ ¢ */
(with a, b, and ¢ not containing any more instance of /* or */) then the comment actually ends with the * / after b,
and ¢ */ will be “seen” by SASdecoder (and may cause an error). If either c is accepted as legal, or it is absent; and if
the context is such that a command is expected, then the final * / will actually be the start ofa * ... ; type
comment.

It is believed that this behavior mimics SAS, though certain other peculiar behaviors may occur in SAS with these
situations.

* Enclosing comment delimiters in quotation marks may invoke some peculiar behavior in SAS.

37

unbroken sequence of letters, underscores and digits, but the initial character may not be a digit.
Identifiers are case-insensitive (though note that in Stata and some other data-handling software,
identifiers — notably, variable names — are case-sensitive).

Each instance of an identifier is interpreted in a particular “name space”. There are several name
spaces, and the same identifier may occur in different name spaces, each with a distinct
interpretation of the same identifier. Thus, for example, a variable name may be the same as a
statement name; you can use “input” as a variable name. (This may be considered poor
programming practice, as it may confuse human readers, but it is possible and causes no confusion
to SAS or SASdecoder.) The context in which an identifier is used determines the name space in
which it is interpreted.

The name spaces recognized by SASdecoder are...

Statement names (e.g., INFILE, INPUT, LABEL, FORMAT, DATA, RUN)
proc names (e.g. FORMAT; note that FORMAT is both a statement and a proc)
variable names

formoids ("base names" for formats)

informoids ("base names" for informats)

infile options (LRECL, N, FIRSTOBS)

dataset names

librefs (the first part of a two-part dataset name)

filenames (as defined in a FILENAME statement)

libnames (as defined in a LIBNAME statement)

character string literals

Some of these, in particular command names, infile options, informoids and proc names, are not at
the user's control; all the others are names that are created by the user's code. The important thing to
know is that each of these categories is a distinct “space” in which identifiers exist independently of
the other name spalces.26

Character string literals are not identifiers, but the class of character string literals functions as a
name space for the purpose of parsing SAS code. They also differ from identifiers in that the case is
preserved and they may span lines.

While it is possible to use any identifier as a variable name in SAS, in many data-handling
facilities, certain names are reserved and are unacceptable as variable names and possibly other
features. Thus, you need to be wary of this possibility in the course of reading or transferring the
data. SASdecoder will flag variable names that are Stata-reserved names, which are the following:

*® The author is not aware of whether this is exactly the same set of name spaces used by SAS, though it seems to be a
reasonable emulation of SAS behavior within the set of statements that SASdecoder recognizes. The terms “formoid”
and “informoid” were created by the author for the purpose of this discussion. They are the base names — the part
before the width, the period, and decimal — of formats and informats, respectively. For example, in the informat F10.2,
F is the informoid. (There is also an F formoid as well.) Note that some formoids are pre-loaded, while others — the
values established in VALUE statements — are user-defined.

38

_all _b byte _coef _cons double float if in int long _n _N _pi _pred _rc _se _skip using with

See the Stata User's Guide for more information — [U] 14.3 Naming conventions, in both the Stata 7
and 8 User's Guides, [U] 11.3 in the Stata 9 and 10 User's Guides, or see “reserved names” in the
Stata User’s Guide index.

In accordance with Stata lexical rules, this checking for reserved names is case-sensitive and is
performed on the names as they appear in the output. Thus, this name checking is dependent on
whether the output is in upper or lower case. Rendering variable names in upper case will eliminate
the possibility of a problem with all reserved names except _N (though many users will prefer to
not use upper-case variable names). These names are believed to not be prohibited from use in
other Stata entities such as value names, and are of no consequence in such SAS entities as
libnames and filenames.

If you are outputting a Stata dictionary, and any of these identifiers appear, you will need to modify
the name(s) — either in the resulting dictionary or in the SAS file (and rerun the translation). In the
Stat/Transfer schema file, these Stata-reserved names are also flagged, just for informational
purposes. They may or may not pose a problem, depending on your ultimate targeted data format.
(And there is no checking for names that might be illegal in any other data format.”” You may need
to look for variable names that are illegal, if there are any, in your targeted data format.)

SASdecoder has no particular limit to the length of identifiers, though SAS, Stata, and many other
data facilities have a limit of 32 characters for variable names. If a variable name appearing in an
INPUT statement exceeds 32 characters, you will get a warning in the output file, but since SAS
has the same limit, a valid SAS specification should never invoke that warning.

Character String Literals

Many types of statements (in SAS and most other programming languages) can include
components that are textual values. Such a value needs some way to mark its beginning and end™®,
and to distinguish it from other lexical features, since a textual value could consist of just about any
sequence of characters, which could be confused with some other token type or a meaningless
stream of text. This is accomplished by surrounding the value by a designated delimiter character —
a quotation mark or apostrophe. Such a construct is called a character string literal, and its value (or
“content”) is the text between the delimiters. The whole thing should be regarded as a textual
representation of a textual value.

In SAS, the delimiter may be either a quotation mark or an apostrophe. But whichever one is used
for introducing the character string value must be the same one that ends it. That is, the same
delimiter must be used at both ends. Thus,

"famincOl.dat"

and
'faminc0Ol.dat'

*7 Stat/Transfer may in fact create a variable that is illegal in the given target data format; it can create a variable that
would be impossible to create within the chosen data software, such as “using” in Stata.
% __since, for one thing, it may contain spaces.

39

are equivalent.

Within the content of a character string literal, a double occurrence of the delimiter serves to
represent a single occurrence of that character. Thus 'nine o''clock' represents nine o'clock.

Given a character string that is introduced by one of the delimiters, the other delimiter has no
special significance; it is like any other character. Thus, the value represented in the previous
example could also be represented by "nine o'clock".

In all of what follows, character string literals will be delimited by quotation marks, but it should be
remembered that either form is acceptable.

Character string literals in SAS may span lines. The “pieces” will be concatenated. Thus,

"hello

world"

and

"hello world"”

are equivalent.

Numeric Literals

Another feature found in SAS code is the numeric literal — a textual (decimal) representation of a
number. In SASdecoder this is limited to nonnegative integers, e.g., 3.

There are structures that may look like floating point numbers, e.g., 6 . 2, however, within
SASdecoder, the only occurrences of such a constructs are in formats and informats.

Formats and Informats

Another important set of lexical features comprise formats and informats. These are specifications
for how values are represented textually; formats apply to output, informats apply to input (the
reading of raw data). Their use will be described elsewhere; the present discussion is about their
lexical form. Formats and informats are unbroken strings of letters, underscores, or digits, along
with a single period, which is either within the string or at the end, but never at the beginning. It
may look like a decimal number, e.g., 8. 2, or it may have letters or underscores, in which case it
may not start with a digit. If the period is not at the end, then what follows the period must be a
sequence of digits. Usually, there are also digits preceding the period as well, as in F5.1 . The
digits to the left of the period specify a field width; the digits to the right specify implicit decimal
places. Thus, for example, an F3 . 1 informat specifies a width of 3 and 1 implied decimal. It will
cause a field value of 142 to be interpreted as 14.2. The decimal specification may be absent, in
which cases it is equivalent to 0.

40

If there are non-digits present in the format or informat, they form the “base name”; different
formats and informats may share a base name, with the width and decimals forming different
variations. Here are several variants of the F informat, where F is the base name:

® F8.0
e F12.2
e F12.4

Formats and informats may also have a preceding dollar sign ($) to indicate a character string
variable or character string format. For example, SCHAR14 . The $ may be attached or separated:
SCHAR14. or $ CHAR14. .

(Actually, these are not precisely the same, but the effect may be equivalent.)

SAS allows specific formats and informats, and there are many that serve as both formats and
informats. To SASdecoder, formats and informats look the same, though where informats are used,
only certain ones are accepted.

In addition to formats and informats that are predefined (more precisely, have predefined base
names), there is the possibility of user-defined formats, as defined in the PROC FORMAT
statement, which will be explained later.

Special Characters
There are occasions that use special characters such as /, $, +, @, #, &, *. These will be described

as needed. The thing to remember is that, from a lexical standpoint, they are generally each a one-
character token.

41

SAS Language Features Accepted by SASdecoder — Structure

This section will explain the structural features of SAS programs that SASdecoder accepts.

SAS Steps

SAS programs operate along the concept of “steps” — segments of code that are processed as a unit.
SASdecoder also follows this concept of steps.

There are two types of steps: data steps and proc steps. Every point within a SAS program either
initiates a step or is in a data step, a proc step, or a neutral zone (a region that is not in a data or
proc step). Neutral zones occur before the first step, or between steps, and only a few statements are
valid in a neutral zone. In terms of what SASdecoder accepts, only FILENAME, LIBNAME,
COMMENT, and RUN are allowed in a neutral zone. (RUN is allowed but has no effect in a neutral
zone. Also, DATA and PROC are allowed, as they initiate steps.)

Most statements are valid only in some steps. A statement occurring in the wrong context will
usually result in a warning or may invoke a fatal error.

A data step begins with a DATA statement.
A proc step begins with a PROC statement.

Either kind of step ends whenever...

® anew step is started (i.e., a DATA or PROC statement occurs);
e a RUN statement occurs;
e the end of the file is encountered.

It is helpful to consider a data step as a code loop that runs through the set of all observations. Also,
variables are meaningful only within the data step that defines them. See the section on Scope of
Variables; Permanent vs. Local Symbols for more on this.

SASdecoder recognizes only one type of proc step: PROC FORMAT, and within that proc, it only
recognizes VALUE statements (and a limited form of them). These set up a correspondence between
numeric values and text — what are known as value labels in Stata and some other data-handling
facilities.

The significant value of SASdecoder lies in two areas:

® its capacity to translate the elements of INPUT statements that appear in DATA steps;
® its capacity to translate PROC FORMAT and VALUE statements.

In either case, these statements are tied to the steps in which they are located.

42

Usually a data step represents a read-in operation of a single raw data file. But note that SAS can
operate on multiple files in one data step, though SASdecoder does not handle this possibility. This
will be explained further in the section on The INFILE statement.

In a typical use, the SAS program you are translating would have just one data step. But
SASdecoder can also accommodate multiple data steps, and many existing SAS files involve
multiple data steps. Some adjustment to the output will be necessary in that case. The reason is that
each data step — each file read-in operation — needs to have its own corresponding Stata dictionary
or Stat/Transfer schema file, since each Stata dictionary or Stat/Transfer schema file performs a
single read-in operation. But SASdecoder is set up to produce just one Stata dictionary and/or one
Stat/Transfer schema file in each run. Thus, in the cases where you have multiple data steps, the
resulting Stata dictionary or Stat/Transfer schema file will need to be broken up into several
separate files, one for each data step.

The Stata do-file, on the other hand, could be used for multiple read-in operations. This would
require these steps: (1) Break up the dictionary to several files, one for each data-step. Each
dictionary will naturally have a distinct name. (2) In the do-file, substitute the corresponding
dictionary names in each infile command. (3) In the do-file, place save and drop _all
commands between each data step. There should be commented text indicating where to place
these. You will need to specify distinct file names with each save command. Note that the use of
drop _all (rather than clear) will preserve any value labels that may be needed from one infile to
the next.

An alternative way to handle this situation would be to break up the SAS code into separate files,
one for each data step. (You would need to retain a copy of any common VALUE definitions that
may be used in each of the files — or run the files in sequence, using the “retain perm symbols” or
retain_perm option.)

Scope of Variables; Permanent vs. Local Symbols

An identifier’s scope is the range of statements in which it is meaningful. In SAS, a variable’s
scope runs from its first appearance within a data step through the end of that step; it ceases to exist
past the end of the step. Thus, variables are “local” to the steps they inhabit; a variable defined in
one data step is unknown to other data steps, and the same variable name may appear in different
data steps, but they are completely independent.

Certain other identifiers are “permanent”; they exist from the point they are first defined, and
remain in existence, independent of step boundaries, until they are explicitly deassigned, or to the
end of the SAS session. Some are predefined, such as the F and CHAR informoids. The permanent
symbols that SASdecoder recognizes are...

value labels

filenames

libnames

formoids (base names for formats)
informoids (base names for informats)

43

As mentioned in the section on Options, the default action of SASdecoder is to deassign all user-
defined permanent symbols at the end of each invocation of the parser. In SAS, on the other hand,
permanent symbols persist between runs of SAS code within the same SAS session. Thus, a run of
code can make use of any permanent symbols (value assignments, libnames, etc.) from an earlier
run, and a subsequent rerun of SAS code that includes assignments of permanent symbols will
actually cause the symbol assignments to replace the earlier ones, even they are the same as before.

By using option [retain|retain_perm] on or the “retain perm symbols” checkbox, this is
changed so that permanent symbols persist between invocations of the parser, and your
SASdecoder session will behave like a SAS session in this regard. Then you can use the “Clear
Perm Symbols” button or the clearpermor clear_perm commands to clear these symbols, if
desired. Please note that this pertains to user-defined permanent symbols; predefined permanent
symbols remain perpetually defined; they are unaffected by these options and actions.

Data Types Revisited

Every variable has a data type: the types of values it may contain — most significantly, whether it is
numeric or character string. Nearly every statement that deals with variables will set the type if it is
not already set, and for character string variables, the length can usually be set as well. Thus, you
may have seen or heard, “a variable's type is determined in its first appearance.”

There is one exception among the statements accepted by SASdecoder: the LABEL statement (or an
ATTRIB statement that assigns only a label) does not set the type.”

As mentioned, character string variables usually get their length defined as well. But if no length is
defined, it will default to 8.

While many different types of statements can define variables, only those variables that appear in
an INPUT statement will show up in the Stata dictionary or Stat/Transfer schema.

% If a variable is first mentioned in a LABEL (or equivalent ATTRIB) statement, it is untyped at that point. It can
acquire a type subsequently, or will eventually default to numeric.

44

SAS Statements Accepted by SASdecoder

SAS statements begin with a statement name such as DATA or FILENAME. SASdecoder accepts
the following SAS statements, that is, statements beginning with these identifiers:

e COMMENT
e DATA

e RUN

e FILENAME
e LIBNAME
e INFILE

e TINPUT

e LABEL

e PROC

e VALUE

e FORMAT

¢ TINFORMAT
¢ LENGTH

e ATTRIB

This is a small subset of the statements that SAS uses, but these are the ones which are essential to
the task of reading raw data, plus a few other related statements. In what follows, there will
occasionally be a reference to what SAS accepts — as contrasted with what SASdecoder accepts.

In the following syntax descriptions, elements in UPPERCASE, FIXED-WIDTH FONT represent
segments of text that are to be written as given, though lower-case is accepted as well. Elements
written in italic font are symbolic entities that are to be substituted by actual values. For example in
the description for FILENAME,

FILENAME identifier "file_name";

“FILENAME” is written as part of the statement, whereas identifier is to be substituted by an
identifier and file_name is to be substituted by a filename, as in

FILENAME inp "C:\AHS\AHS1975RAW.TXT"

Elements written [inside square brackets] are optional. The square brackets are symbols used here
for describing the syntax; there are no actual square brackets used in any of the SAS language
features that SASdecoder understands. Thus, for example, a description such as

varname [$] position_spec

indicates that the dollar sign is optional; the square brackets do not appear in actual instances of the
form being described.

45

An ellipsis (...) indicates that the preceding construct may be repeated an arbitrary number of times.
Only the one preceding element may be repeated. Thus, in

VALUE name value_element ... ;
one or more value_element entities may follow name.

Following is a description of the SAS statements that SASdecoder understands. Subject to the
limited set of SAS features that SASdecoder allows, SAS grammar is followed as best as is
practical, but may differ slightly from actual SAS grammar.

Variable Lists

Several of the statements accept a list of one or more variables, with the additional possibility of
certain wildcard forms. Wherever such a list is accepted it will be denoted as a “variable_list”. Such
a list consists of a sequence of one or more (in some contexts, it might be zero or more) instances
of the following types of entities, separated by whitespace.

e avariable name (an identifier)

e a “colon wildcard” — a possible prefix of variable names, followed by a colon, as in ABC:

® a construct consisting of two items separated by a hyphen, denoting a range of numerically-
suffixed identifiers such as M13-M24

e arange of variable names, indicated by pair of existing variables, with a double hyphen
between the two names. Example: EMPID--SALARY

e arange of existing variables, with a limiting qualifier between two hyphens:
o EMPID-CHARACTER-SALARY
o EMPID-CHAR-SALARY
o EMPID-NUMERIC-SALARY

¢ one of the predefined wildcard symbols:

e ALL_
e CHARACTER_
e CHAR

e NUMERIC_

Some of these forms refer to “existing variables” or variables that “already exist”. By this, we mean
the set of variables that have been established — that is, mentioned in previous statements — prior to
the statement in which the variable_list appears.

A colon wildcard indicates all existing variables that start with the indicated prefix. Thus, CAT :
represents all existing variables that begin with CAT; it may, for example, include CATALOG,
CATEGORY, and CATAPULT, assuming that these already exist as variable names.

A range of numerically-suffixed identifiers represents a list of names formed by concatenating the
common prefix with the set of integers in the indicated range. Thus, M13-M24 represents

M13 M14 M15 Mle M17 M18 M19 M20 M21 M22 M23 M24

46

Note that if the numeric suffixes have differing widths, the generated names use the lesser width.
For example,

® 778-72712 generates 2728 7729 7710 ZZ11l ZZ12
e 77208-2Z12 generates 2208 77209 ZZ10 zzl1ll zz1l2
e 77008-ZZ12 generates 2208 77209 ZzZ10 zzl1ll zzl2

You can also write the range in backward order; ZZ12-778 generates the same set of names as
278-7712, though in reverse order.

The names generated by such a construct can be new or already-existing variables. If they are new,
then they are being established by the present statement

A range of variable names is indicated by pair of existing variables, with a double hyphen between
the two names’". This represents the set of variable names, spanning the two names as found in the
list of existing variables in the order that they have been established. Thus, if prior statements have
established the variables CASENO, EMPID, EFFD, JOBCODE, JOBGRADE, SALARY, STATUS, in
that order, then EMPID—SALARY represents EMPID EFFD JOBCODE JOBGRADE SALARY.

Note that the two “boundary names” must exist and appear in the given order. In the example,
EMPID must precede SALARY in the list of existing variables.

The next form is a range of existing variables, with a limiting qualifier between two hyphens. This
is just a variation of the basic range of variable names, but limited to either character or numeric
types. Thus, EMPID-CHARACTER-SALARY is the same as EMPID—SALARY, but limited to
character variables. (CHAR is a synonym of CHARACTER.)

Finally, the general wildcard symbols represent all variables, or all variables of one type.
e _ALL_ represents all existing variables.
e _CHARACTER_ represents all existing character variables.
e _CHAR_ also represents all existing character variables.
e _NUMERIC_ represents all existing numeric variables.

Any of the wildcard forms (other than the unqualified name range) might yield an empty set of
variables, if no existing variables match the given criteria.

A varliable_list component of the form a-numeric-b will pick up all variables, in the range, that are
not yet defined as character. This is true, even if it's for a statement that makes it character. For
example,

length a $4;

label b = "hello"; /* b is untyped at this point */
length ¢ $5;

length a-numeric-c $12;

%% The two hyphens can be separated.

47

That will pick up b as numeric, because it is not character, and then define it as character. This
behavior has been observed in SAS and has been emulated in Sasdecoder.

Limited Variable Lists

In certain contexts, in INPUT statements, in particular, a limited form of a variable_list is used.
This encompasses all the possible features of a variable list, except for...
® a “colon wildcard” — a possible prefix of variable names, followed by a colon, as in ABC :

® the predefined wildcard symbols: _ALL_, CHARACTER_, _CHAR_, NUMERIC_.

Limited_simple_integer_expressions

Some syntactical elements take what could be called a limited_simple_integer_expression. These
are the values that can occur after @, +, or # in an INPUT statement. They are usually just an
integer literal, such as 15, but other forms are possible. SAS allows a general expression (except
for a missing value literal) in these contexts, however, SASdecoder will accept only a limited set of
forms.

To explain what a limited_simple_integer_expression is, we will first define a
simple_integer_expression. This comprises...

¢ an integer literal

¢ an identifier

e (simple_integer_expression)

e +simple_integer_expression

o —simple_integer_expression

This is a recursive definition, allowing for nesting of parentheses and multiple leading unary plus
and minus signs. The minus sign yields the negative of the value it precedes, as you would expect;
the plus sign has no effect. Though this may resemble the definition of a generalized expression, it
does not allow (that is, the present capability of SASdecoder does not allow) any binary operations;
the construction of such an expression must terminate with a single integer literal or identifier.

Having established that definition, then the definition of a limited_simple_integer_expression is...
® an integer literal
¢ an identifier
e (simple_integer_expression)

That is, a leading unary plus or minus sign may not appear at the outermost level of such an
expression (that is, a plus or minus sign may not be the starting character), but may appear deeper
within it. In other words, if you want to use a leading unary plus or minus sign, then it, along with
its following subexpression, must be enclosed in parentheses.

Note that in the contexts in which these expressions are used in SASdecoder, the use of an
identifier yields a non-determinable value. This will be explained further in the various places that
refer to these kinds of expressions.

48

The COMMENT statement
Syntax:
COMMENT nearly_anything_except_a_semicolon ;

The COMMENT statement ends at the first semicolon — except that any semicolon embedded
within a character string literal that is the first token past COMMENT does not count as ending the
command.

The content of the statement — that is, all text up to the ending semicolon — is skipped over.

The statement name COMMENT can be substituted by an asterisk, though there is a subtle
difference; the remark above about semicolons embedded within a character string literal that is the
first token past COMMENT does not apply in this case.

See the Comments section under the major heading of SAS Language Features Accepted by
SASdecoder - the Lexical Level, for more details on the syntax of these statements and for other
methods of denoting comments.

The DATA Statement
Syntax:
DATA [dataset_name...];

The DATA statement begins a data step; it will also end a step of either type if one is already in
progress.

The dataset_name, if present, may be a simple one-word name:
DATA mydata;

or it may be in a two-word name — two identifiers joined by a period:
DATA cats.mydata;

(No spaces are allowed around the period.) The first component is a libref; the second is the actual
dataset name. But these distinctions have no significance in SASdecoder.

The only effect of the DATA statement is to introduce a data step. The optional dataset name and
libref are parsed but subsequently unused.

Note that SAS allows a great variety of options on the DATA statement, which are not currently
accepted by SASdecoder. If your SAS file has such options, you will need to edit or comment them
out.

49

The RUN statement

Syntax:
RUN;

This serves to end a data step or proc step. (It is also allowed in a neutral zone, with no effect.)

The FILENAME Statement

Syntax:
FILENAME identifier |"file_name"];

This establishes an association between the identifier and the file name, which can later be used in
an INFILE statement. (See The INFILE Statement for an example of this.) This association must
be made before it can be used; that is, the FILENAME statement must come before the use of the
identifier in an INFILE statement.

The FILENAME statement can be used anywhere, including neutral zones. The scope of the
identifier is from its definition forward through the end of the program, or until it is redefined by
another FILENAME statement. That is, filenames are permanent symbols. See the section on
Scope of Variables; Permanent vs. Local Symbols for more on this matter.

In SAS, within a given session, the assignment made by this statement will persist beyond the
running of a given SAS file, into the next run — analogous to a global macro in Stata. Thus, in SAS,
if the SAS file neglects to assign a filename or if the FILENAME statement fails due to a
grammatical error, but you assigned the filename (correctly) earlier in your session, then you may
have a correct run anyway. SASdecoder will emulate this behavior if the “retain perm symbols”
checkbox is checked or the retain_perm option is on.

You can reassign a filename identifier:

FILENAME inp "C:\AHS\AHS1975RAW.TXT";
FILENAME inp "C:\AHS\AHS1980RAW.TXT";

The latter value prevails.

You can deassign (erase) a filename identifier by omitting the filename:

FILENAME inp;
Inp now has no assigned value.

Note: In SAS, the FILENAME statement may have grammatical errors that are non-fatal (though
there may be consequential fatal errors elsewhere). In SASdecoder, grammatical errors in these
statements are fatal. This difference should not likely be very inconvenient.

50

Older SAS documentation indicates that you can put multiple definitions in one FILENAME
statement: FILENAME fileidl "namel" fileid2 "name2"; This, apparently, is no
longer valid, and is not accepted by SASdecoder.

The LIBNAME Statement

Syntax:
LIBNAME identifier [lib_specification];

In SAS, there are several forms of lib_specification. SASdecoder accepts only one form: a
character string literal. Thus, the syntax in SASdecoder is limited to...

LIBNAME identifier ["lib_name"]|;

This has no effect in SASdecoder, but it is accommodated because it typically occurs in the SAS
files that read raw data. The identifier is known as a libref. The assignment of the libref to the
specification is recorded, but no further use is made of it.

SAS also accepts other forms and options, including the possibility of concatenating libraries by
writing a space-separated list of one or more lib_specifications enclosed in parentheses:

LIBNAME identifier (lib_specification...) ;

where each [ib_specification is either a character string literal or an existing libref. This form is not
accommodated by SASdecoder.

The LIBNAME statement can be used anywhere, including neutral zones. The scope of the
identifier is from its definition forward through the end of the program, or until it is redefined by
another LIBNAME statement. That is, libnames are permanent symbols. See the section on Scope
of Variables; Permanent vs. Local Symbols for more on this matter.

(As with the FILENAME statement, in SAS, the effect of this statement will persist beyond the
running of a given SAS file within the same session. SASdecoder will emulate this behavior if the
“retain perm symbols” checkbox is checked or the retain_perm option is on. However, since
there is no real effect within SASdecoder, this is of no consequence.)

As with FILENAME, you can reassign and deassign libname identifiers; refer to the section on
FILENAME for examples.

Note: In SAS, the LIBNAME statement may have grammatical errors that are non-fatal (though
there may be consequential fatal errors elsewhere). In SASdecoder, grammatical errors in these
statements are fatal. This difference should not likely be very inconvenient.

Older SAS documentation indicates that you can put multiple definitions in one LIBNAME
statement: LIBNAME librefl "namel" libref2 "name2"; This, apparently, is no
longer valid, and is not accepted by SASdecoder.

51

The INFILE statement

xSyntax:

INFILE "file_specification" [option ...];
or
INFILE identifier [option ...];

The INFILE statement is used in a data step to specify the raw data file. In the first form,
file_specification is the name of the raw data file. In the second form, identifier is an identifier that
was previously defined in a FILENAME statement, which names the raw data file. Thus, you may
write...

INFILE "famincOl.dat";
or, equivalently,
FILENAME familyincomefile "famincOl.dat";
INFILE familyincomefile;
The options will be described below.
The effect of the INFILE statement is to place the file specification into the dictionary header line
in the Stata dictionary:
dictionary using famincOl.dat {
or in a FILE statement in the Stat/Transfer schema file:

file famincOl.dat

Without such an INFILE statement, you will get a note in the output alerting you to the absence of
a file name.

The INFILE options accepted by SASdecoder are

® [RECL=n
e N=n
¢ FIRSTOBS=n

where n stands for a positive integer. Thus, you may have, for example,

INFILE "famincOl.dat" LRECL=124 FIRSTOBS=9;

The LRECL option adds a brief note to the dictionary or Stat/Transfer schema file, alerting you to
the fact that an LRECL option was present in the SAS file. This may just indicate that the raw data
file has lines that are all of the same length as specified in the option (124 in this example), and is
of no consequence to Stata or Stat/Transfer. In possibly rare circumstances, the raw data file may
be “unformatted” — having no end-of-line markers. If so, and you would need to inspect your raw
data to determine this, you may require the _lrecl () feature in the Stata dictionary;
Stat/Transfer does not have such a feature. (Apparently, SAS takes this feature to mean “impose an

52

end-of-line after n characters if it isn’t explicitly there, but respect the end-of-line if it is.” Stata has
a same-named feature, but it behaves more strictly and is much more rarely needed; see the Stata
help for infile2 for more on this.”").

Most raw data files nowadays are formatted into lines, and the LRECL feature is irrelevant to either
Stata or Stat/Transfer (and SAS). But if you do have an unformatted raw data file, insert

_lrecl (n) into the Stata dictionary. If you use Stat/Transfer, you would need to do some
conversion operation to format the raw data.

The N option has no effect; its use in SAS has no corresponding feature in Stata or Stat/Transfer.
Note that this » in the N option is not necessarily the number of lines per observation. The number
of lines per observation is determined by the maximal line specified with “line number movement”
directives. See the explanation of #n, below, under Input Specifications for more on this matter.

The FIRSTOBS option will generate a
_firstlineoffile (n)
directive in the Stata output, or
first linen
in the Stat/Transfer schema file. These directives indicate that the data actually does not begin until

line 7 in the raw file.

No other INFILE options are currently accepted. If your SAS file has other options, you should edit
or comment them out.

IMPORTANT NOTE: SAS uses a dynamic interpretation for the INFILE statement, whereas
SASdecoder uses a static interpretation, which is a natural consequence of the static interpretation
used by both Stata and Stat/Transfer. Operationally, this means that, in SAS, an INFILE statement
specifies which file to read the next data field from; you can think of it as an introductory clause to
an INPUT statement. Thus, you can, in one data step, switch back and forth between different raw
data files:

31 The 1recl () directive in Stata would be needed if the raw data were a stream of characters with no intrinsic
formatting into records or lines — that is, no “line breaks”. Thus, you will need to know the low-level structure of your
raw data file to make the decision as to whether an _1recl () directive is needed. In actual use in modern computing
environments, it is very rarely needed. If you suspect that you do need it, you may want to test your dictionary with and
without it. For more information, see “Dictionary directives” under “infile (fixed format)” in the Stata Data
Management Manual.

Note that Stata and SAS use _1recl (n) and LRECL=n, respectively, in somewhat different ways, if the file has built-
in line breaks (as do normal text files). In Stata, it causes the file to be reformatted into records of length n, beginning
every n characters, ignoring (skipping over) any built-in line breaks. SAS, on the other hand, seems to be sensitive to
the line breaks, and will truncate lines to n characters if they are longer than #. In other words, Stata requires an

_1lrecl (n)in the absence of line breaks, and will trip if both the _1recl (n) and line breaks are present; SAS is not
bothered if both are present. So the behavior of Stata and SAS may differ in this regard, given the same raw data files
and these seemingly equivalent directives or options.

53

DATA;
INFILE "abc.txt";
INPUT vl v2 v3;
INFILE "def.txt";
INPUT v4 v5;

RUN;

In SAS, the effect of this would be that v1, v2, and v3 are read from abc.txt, and v4 and v5 are read
from def.txt, creating a single dataset which is effectively a merge of two datasets. Stata and
Stat/Transfer cannot do this in one step.*>

SASdecoder interprets such code by scanning the entire data step, and retaining the last INFILE
statement. Thus, the example above would result in a Stata dictionary or Stat/Transfer schema that
references only def.txt. You would, however, get a warning alerting you that multiple INFILE
statements were encountered; this warning appears on the screen, or in the Progress Log list box of
the Windows Interface, as well as in the output files.

Other odd situations are possible. Consider this example:

DATA;
INFILE "abc.txt";
INPUT v7 v8;
INFILE "def.txt";
RUN;

In SAS, the effect of this would be that v7 and v8 are read from abc.txt. Then the designated file for
reading raw data is switched to def.txt, but that has no effect, since it is immediately switched back
to abc.txt the next time through the loop. So the outcome is that all data are read from abd.txt, and
def.txt is effectively ignored. Meanwhile, SASdecoder would interpret this as reading from def.txt
only. This is an unfortunate consequence of SASdecoder’s “use the final infile mentioned” policy,
but it would be particularly complicated to include an algorithm to detect these sorts of situations.
Fortunately, these situations are rare; this example might be considered pathological. In realistic
situations, reading from multiple files corresponds to some sort of join or merge of datasets. The
practical thing to do is to arrange to read the files separately and then do an appropriate merge in
subsequent processing.

One final note on INFILE: SAS requires that the file exist; SASdecoder does not make that check.

The INPUT statement
Syntax:

INPUT input_spec ...;

3% Stat/Transfer cannot do this; Stata can possibly do it in several commands, e.g., with a subsequent merge, but not
within the read-in operation (infile) by itself.

54

The INPUT statement is one of the essential parts of SASdecoder, and will be described below
under the heading Input Specifications.

The LABEL statement
Syntax:

LABEL varlabel_assignment ... ;
where varlabel_assignment is

varname = "label"

The LABEL statement assigns variable labels to variables. (Variable labels are distinct from value
labels; see The VALUE Statement and The PROC Statement (PROC FORMAT) for how to
create and assign value labels.)

If a variable is mentioned multiple times in one or more LABEL statements (in the same or in
separate LABEL statements), the final one will be used.

In the Stata dictionary, variable labels will appear quoted. If the label contains an embedded
quotation mark, then it is put into compound quotes (" " " ') to enable Stata to correctly read the
label. For example,

_column(403) byte lahca32 %$1f " ""0Old age" causes limitation"'

But no testing or special action will be taken for embedded unbalanced compound quotes, which
could cause Stata to misread the dictionary. While it would be possible to deliberately construct an
example, it is unlikely for such a configuration to occur “naturally”.

In the Stat/Transfer schema, variable labels appear in braces ({ }). There is presently no special
action taken if there is an embedded brace in the label, which might cause Stat/Transfer to misread
the schema.

Labels can also be assigned with an ATTRIB statement (q.v.).

Note that, whereas several other statements (FORMAT, INFORMAT, LENGTH, ATTRIB) take
variable_lists, LABEL takes only a single variable in each label specification.

The PROC statement
Syntax:
PROC procname ;

The PROC statement begins a proc step; it will also end a step of either type if one is already in
progress.

55

In SAS, options may follow procname, but SASdecoder does not accept any. Also, while SAS has
a great multitude of procs available, the only procname accepted by SASdecoder is FORMAT.
Thus, in SASdecoder, the only syntax accepted for PROC is...

PROC FORMAT [procformatoptions ...];

Once this step is initiated, a VALUE statement may be used. (In SAS, every PROC has a specific
set of allowable statements. For PROC FORMAT, in SAS, these are VALUE and PICTURE, but
only VALUE is accepted by SASdecoder.)

For procformatoptions, the possibilities are...
LIBRARY = identifier
DECK

In SAS, identifier must be a valid libref or fileref (presumably defined in a LIBNAME or
FILENAME statement). SASdecoder does not impose that restriction; thus it can be any identifier.
Both the LIBRARY and DECK options have no effect on the output.

The VALUE statement

The VALUE statement creates a user-defined format (or more precisely, a formoid), which sets up
a correspondence between (extended) integer values and textual values — what are known as value
labels in Stata and Stat/Transfer. It is allowed only within a PROC FORMAT.

Syntax:
VALUE name value_element ... ;

where name is a valid SAS name, not ending in a digit, and value_element is

extended_integer = "label"

where extended_integer is either an integer (including negatives) or one of the missing values

., ._, .3, .b, .c,etc.

Typically, there are many value elements, as in

VALUE region

1 = "Northeast"
2 = "South"

3 = "Midwest"

4 = "West";

name is typically “new” — not yet seen in the namespace of formoids. But if it has been seen before,
then the present VALUE statement overwrites the old. name may not be a built-in formoid name,
such as F.

56

The (extended) integer values must be distinct. If this condition is violated, then the VALUE
statement fails; the set of value_elements is not assigned to the name, and any previous assignment
remains in effect.

SAS allows ranges in place of the extended_integer (e.g, VALUE zscale 1-2 = "Low", and
other, more complex specifications). SASdecoder does not accept this. SAS also allows formats to
be defined for character data (with a $ prefix on name); this is also not accepted by SASdecoder.
And SAS allows the keyword OTHER in place of a value, to signify “all other values not covered”;
this is not accepted by SASdecoder either. Most of these restrictions correspond to limitations in
what can be translated to Stata or Stat/Transfer.

The values that can appear as extended_integer include the missing values . (sysmis) and .__ .
Both of these are accepted, but are not allowed in Stata and are flagged with a notice in the Stata
output (do-file). In Stat/Transfer, they are accepted, but may cause unexpected results, and a
warning is included in the output. (. may be ignored; ._ may get interpreted as 0).

The format (or formoid) created by a VALUE statement can subsequently be associated with a
variable using a FORMAT or ATTRIB statement. When doing this, a period must be appended to
indicate a format — in this case a user-defined format. For example, if the above definition of region
has been made, you can then assign it to a variable as follows:

FORMAT reg0l region.;

(You can also include width and decimals, as in FORMAT reg0l regioné6.3;, however, these
features are ignored.)

The format (or formoid) created by a VALUE statement corresponds to a value label in Stata and
Stat/Transfer. For Stata, a 1abel def command is written in the do-file, and if an assignment
was made (in a FORMAT or ATTRIB statement), then a 1abel val command is written. In
Stat/Transfer, both the definition and assignments (if any) are written within the schema file.

The format (or formoid) created by a VALUE statement is a permanent symbol. See the section on
Scope of Variables; Permanent vs. Local Symbols for more on this matter.

Note that SASdecoder does not support the PICTURE statement, a related statement. But this is not
something that can be translated to Stata or Stat/Transfer.

The FORMAT statement

Syntax:

FORMAT [format_assignment ... | ;
where format_assignment is

variable_list [format]

57

and variable_list is composed of one or more (space-separated) variable names or wildcard
elements. See the section on Variable_lists for more information about this.

format is a sequence of letters, underscores, or digits, along with a single period that appears after
the start of the sequence. The period can be surrounded by digits, indicating a field width and
decimals; one common form consists of only digits surrounding a period. The format may also be
preceded by a dollar sign (with or without intervening space), indicating that the variables are
character string. See the section on Formats and Informats for more details on the form of
formats.

The FORMAT statement assigns a format to one or more variables.

In SAS, formats specify how values are represented in textual output. In SASdecoder, they are
accepted but mostly ignored, except if the format is a value label that was previously defined in a
VALUE statement.

If a variable in variable_list already has a format assigned, that assignment is replaced with the new
one. If format is absent then the variables are assigned no format; any previously existing format
assignments are removed.

If format includes a field width and the variable is character and has not yet had its storage length
set, then the storage length will be assigned as the given field width.

As mentioned, in SASdecoder, the only significance to a format assignment is if the format is one
previously defined in a VALUE statement. In that case, code is written into the Stata do file or the
Stat/Transfer schema to assign the value label to the variables.

Note that in the VALUE statement, the format is written without the period; in the FORMAT
statement, the period is required. For example,

PROC FORMAT;
VALUE sexfmt

1 = "male"
2 = "female";
DATA;

FORMAT sex sexfmt.;

Note that format assignments can also be made in an ATTRIB statement (q.v.).

The INFORMAT statement

Syntax:

INFORMAT [informat_assignment ... | ;
where informat_assignment is

variable_list [informat]

58

and variable_list is composed of one or more (space-separated) variable names or wildcard
elements. See the section on Variable_lists for more information about this.

informat is a sequence of letters, underscores, or digits, along with a single period that appears after
the start of the sequence. The period can be surrounded by digits, indicating a field width and
decimals; one common form consists of only digits surrounding a period. The informat may also be
preceded by a dollar sign (with or without intervening space™), indicating that the variables are
character string. See the sections titled Formats and Informats and Informats as Input
Specifications for more details on the forms and uses of informats.

The INFORMAT statement assigns an informat to one or more variables. In SAS, informats specify
how values are read in an INPUT statement. They can either be mentioned in an INPUT statement,
or assigned prior to use in the INPUT statement. Such an assignment is made in an INFORMAT
statement or an ATTRIB statement.

If a variable in variable_list already has an informat assigned, that assignment is replaced with the
new one. If informat is absent then the variables are assigned no informat; any previously existing
informat assignments are removed.

If informat includes a field width and the variable is character and has not yet had its storage length
set, then the storage length will be assigned as the given field width.

If a variable is assigned an informat and an informat also appears for that variable in an INPUT
statement, the one in the INPUT statement takes precedence. If a variable is assigned an informat
and appears without an informat in an INPUT statement, then it is taken as having list input. That
is, the fieldwidth mentioned in the assignment (in the INFORMAT or ATTRB statement) is
ignored. However, the decimals specification, if any, from that informat assignment, does get used.
(That last point is in contradiction to some SAS documentation; however, it seems to be actual SAS
behavior, and SASdecoder has been made to conform with this.)

SAS uses assigned informats (if informats are absent in the INPUT statement) to apply informat-
style data-reading to list input. SAS documentation refers to this as mixing list and formatted input.
In SAS, certain specialized informats can be applied this way, however SASdecoder ignores them
for the most part, except to warn you of unsupported informats, and, as mentioned, to make us of
any decimals specification, that may be present. One use of this feature that SASdecoder does
accommodate is to pre-assign character informats and then to omit them in the INPUT statement:

INFORMAT lastname $15.;
INPUT lastname;

This is equivalent to...

33 The effect of an intervening space, in say INFORMAT abc $ 12.; is that the dollar sign causes abc to have its
type defined as character; abc is then assigned the 12 . informat, which is properly numeric, but can safely serve for
character data. Without the space, the $ also defines abc as character type, but its assigned informat is $12. — a true
character informat.

59

INPUT lastname: $15.;

Note, however, the use of the colon (:) format modifier; this will be explained under Format
Modifiers.

Also note that informat assignments can also be made in an ATTRIB statement (q.v.).

The LENGTH statement

Syntax:

LENGTH length_declaration ... ;
where length_declaration is one of the following:

variable_list [$] integer
DEFAULT = integer

where variable_list is composed of one or more (space-separated) variable names or wildcard
elements. See the section on Variable_lists for more information about this.

The presence of a dollar sign signifies that the variables are of character type.
The LENGTH statement sets the storage lengths of variables.

For the variable_list form of the length_declaration, the integer must be in the range of 1-200 for
character variables, and 2-8 for numeric variables. For character variables, only the first occurrence
of a LENGTH statement (or equivalent ATTRIB statement) is used; any subsequent occurrence is
flagged and then ignored.

In SASdecoder, the length setting for numeric variables has no effect.

The DEFAULT = integer form is intended for changing the default storage length for numeric
variables (it is otherwise 8). SASdecoder parses this but does nothing with it.

Storage length can also be made set in an ATTRIB statement (q.v.).

The ATTRIB statement
Syntax:

ATTRIB specification_segment ... ;
where specification_segment is

variable_list attribute_specs
where attribute_specs is one or more of these:

FORMAT = format
INFORMAT = informat

60

LABEL = "label"
LENGTH = [$] integer

The ATTRIB statement sets various attributes for one or more variables; it is virtually a FORMAT,
INFORMAT, LABEL, and LENGTH statement all rolled into one®*, though you don’t need to set
all of these attributes. It is functionally equivalent to a set of corresponding FORMAT,
INFORMAT, LABEL, and/or LENGTH statements. Thus, for example,

ATTRIB clname LENGTH = $ 20 LABEL = "client name";
is equivalent to...
LENGTH clname = $ 20;

LABEL clname = "client name";

See the FORMAT, INFORMAT, LABEL, and LENGTH statements for more on how each of
these statements function.

Typically, variable_list is a single variable name; however a (space-separated) list of variable
names or wildcard elements is permitted. See the section on Variable_lists for more information
about this. (The possibility of multiple names and wildcards allows the assignment of the same
variable label to multiple variables — probably not something you would want to do.)

SAS may exhibit a peculiar restriction. It allows the wildcards _all_ and _numeric_ (and possibly
char and _character_) in the first segment of an ATTRIB statement, but not in later segments.
Thus,

ATTRIB _all_ length = $20 abc label = "hello";
is accepted, but
ATTRIB abc label = "hello" _all_ length = $20;

is not.

This behavior is not emulated in SASdecoder.

** 1t does not have the capability of DEFAULT = integer of the LENGTH statement.

61

Input Specifications
This section describes what may occur under an INPUT statement.

Input Specifications — Introduction
Before proceeding, it will be useful to consider some concepts relevant to data-reading.

SAS accepts four types of data input: column, formatted, list, and named. Of these, SASdecoder
accepts three types: column, formatted, and list. (Named input cannot be done by either Stata or
Stat/Transfer; thus it is out of the scope of what SASdecoder attempts to cover.) To understand
these data-input methods and how they differ, it is helpful to review the concepts of field, field
width, and storage length. These were explained under Fundamental Data-Reading Concepts,
but, to reiterate briefly, a field is a segment of text in the raw data file that holds a textual
representation of the value of a variable for a particular observation. Every field has a particular
starting position and number of characters, the latter being the “field width”. These characteristics
may or may not be the same for each observation, i.e., they may be fixed or they may vary.

Column and formatted input can be characterized as having a fixed field width. Column input has a
fixed starting position as well as a fixed field width. List input implies no particular field width; the
field width is determined by the content of the raw data. In particular, for list input, reading of the
data field begins by skipping spaces; then the value is read until a space or end-of-line is
encountered. These characteristics are summarized in the following table.

Starting Position Field Width
Column Input
Fixed Fixed
Formatted Input
Can vary Fixed
List Input
Can vary Can vary; read
until a space or
end of line.

For list or formatted input, the starting position is not intrinsically fixed by the input specification.
But it is common practice for formatted input to be combined with pointer control (to be explained
below) to fix the starting position, in which case, the result is equivalent to column input.
Formatted input, without pointer control, can also establish implicitly fixed positions in subsequent
variables. (See the implicit option, or the “use implicit positions” checkbox in the Options
section for more on this matter.)

Input Specifications — Briefly Enumerated

The features accepted in an INPUT statement will be described briefly here, and in more detail in a
later section. This two-stage explanation will create some redundancy for the reader, though it will

62

be hopefully tolerable, and possibly beneficial. If any features seem to be absent or unexplained
here, they should be covered in the later Details section.

As mentioned earlier, the INPUT statement accepts this form:
INPUT [input_spec |...;
The forms of input_spec that SASdecoder accepts are:

pointercontrol
variable_spec
grouped_format_list

where...

pointercontrol consists of...
@n
@
+n
#n
/

where n is usually a non-negative integer literal (such as 12), but other forms are allowed,
as will be explained later. Pointercontrol features specify the location of the next variable to be
read.

variable_spec consists of
limited_variable_list [fmt_modifier| [$] [position_spec_or_informat|

where limited_variable_list is one or more variables or other forms that symbolically denote
sets of variables. It is usually a list of one or more variable names, but certain other forms are
accepted. See the section on limited_variable_lists for more on that matter.

fmt_modifier is an optional format modifier: either a colon (:) or an ampersand (&). The
format modifiers will be explained below.

The optional $ indicates that the variable is a character string; it is necessary if the variable's
type has not already been determined and you intend it to be character string.

position_spec_or_informat is either a position_spec or an informat, where...

position_spec specifies column input; it specifies the location of a fixed-position/fixed-
width field. For example, 13-20 signifies column positions 13 through 20.

informat 1s an allowable SAS informat (example 10 .) — for formatted input, which implies
a fixed field width (in the absence of a colon format modifier), but not necessarily a fixed starting
position. This will be described in detail in the Formats and Informats and Informats in Input
Specifications sections.

63

Either a position_spec or an informat may appear, but not both.

position_spec_or_informat can also be entirely absent; this specifies list input, corresponding to
“free format” in Stata, or “format delimited spaces” in Stat/Transfer. (List input is supported by
Stat/Transfer, provided that the schema consists exclusively of list input.)

grouped_format_list consists of two lists, each in parentheses; first a list of variables,
followed by a list of informats or pointercontrol elements. For example,

(name idno yearborn) ($12. $6. 4.)

The variables in the first list get matched with the informats in the second list, in sequence. Thus,
the prior example is equivalent to

Name $12. idno $6. yearborn 4.

Input Specification — in Detail

Input Specifications for Pointer Control

Though the variable_spec is the central feature of input specifications (and grouped_format_list
can be seen as a variant form of variable_spec), it is worthwhile to cover pointercontrol first, as it
is often used in conjunction with all the other forms and it important that it be well understood.

As stated earlier, the specifications for pointercontrol are the following:
@n
@
+n
#n
/

Usually, n is a non-negative integer literal (such as 12), but other forms involving parentheses, +, -,
and identifiers are allowed. In particular, n is a limited_simple_integer_expression, which includes
integer literals among other things. See the section on limited_simple_integer_expressions for
more on these forms. Note that identifiers are allowed, but their use will result in indeterminate
positions or line numbers — rendered as “###” in the output. Thus, while there is some latitude in
what is accepted, usually only integer literals are meaningful to SASdecoder, and in most cases,
only positive integer literals are meaningful and accepted.

Pointercontrol features specify the location (or “position”) of the next variable to be read; a
pointercontrol entity can be thought of as a preface to the variable that comes net. If there are
multiple variables that follow (or a grouped format_list™), only the first variable is affected
directly.

The #, @, and + symbols may have whitespace between them and the n. Thus, you may have
@12

* However, any pointercontrol features embedded within that list will also be applied — after those that precede the list
are applied.

64

or
@ 12

Those are equivalent.
(See the section on Whitespace for more on that subject.)

The possibility of parenthesized expressions enables the use of negative numbers, at least
grammatically. However, under the semantic rules, only the +n form allows negatives. Thus, you
may have + (-3), though the resulting translation is usually invalid. More on this later.

The @n feature specifies a location within the current data line; it means “move to position 7 in the
current input line”. (Position # is often referred to as “column »”.) This is useful with list and
formatted input. Thus, you can have...

input @12 def;

and the variable def will be read starting at position 12. This example uses list input. You can also
have formatted input, which will read from a fixed-length field:

input @12 def 9.;
reads def as a 9-character field starting at position 12. It has the same effect as
input def 12-20;
n must be positive.
Note that if you combine pointer control with column input, the column input overrides the pointer
control. Thus, in
input @12 def 14-22;

def is read from position 14-22; the @12 is irrelevant.

Note that there is a SAS construct where a variable name appears directly after an @ (or + or #):
input @k v;

In this form, SAS takes k to be a variable containing a value to be used as pointer control. This
might be a data variable set by an earlier appearance in the INPUT statement:

input k 1-2 @k v;
or it might be set some other way, such as by an assignment:

k=20;
input @k v;

It could also be undefined:
input @k v;

(with no prior assignment to k), in which case a missing value is assigned to v.

65

This construct has no equivalent in Stata or Stat/Transfer. SASdecoder will accept these forms™,
but the result is an indeterminate position, and a warning is issued in the output.

The @ without a following number is a “trailing @”, and is typically the final element in the INPUT
statement.’’ Such a construct “holds the line”’; a subsequent INPUT statement reads from the same
line. For example,

input vl 1-4 @;
input v2 7-12;

would take vl and v2 as on the same line (it would otherwise read v2 from the next line), and is
equivalent to...

input v1 1-4 v2 7-12;

Note that, while the “hold the line” semantics are implemented by SASdecoder, its usual purpose in
SAS is to create more complex specifications that cannot be directly translated to Stata dictionaries
or Stat/Transfer schemas. That is, an occurrence of a trailing @ is likely to be part of a construct that
doesn’t translate.

A trailing @ on the final INPUT statement in a data step is possible, though its effect may be
unpredictable (or data-dependent) and has no corresponding feature in Stata or Stat/Transfer.”® If
such a construct is found, a warning is issued on screen and in the output files.

There is also a SAS construct that uses a trailing double @ (@@ — with no space between the two
@'s)*®, which is similar to a single trailing @; it holds the line for additional observations, and has no
Stata or Stat/Transfer equivalent.*” SASdecoder will recognize this form, but will raise a fatal error
condition.

The +n feature specifies is another type of pointer movement. This says to go forward n places
within the line, and will be mirrored by a _skip (n) entry in the Stata dictionary file. For

%% 1t parses the @k form — not the assignment statement, as in k=20 .
7 It is permitted to have multiple occurrences of @, with and without numbers, such as...

input vl 1-4 @3 @ @7 v2 @5 @ @4;

But only when there is a "lone" @ (one not followed by a number) that is not followed by anything else but possibly
another @ (lone or not), is the statement regarded as having a trailing Q. This is intended to mimic observed SAS
behavior. Thus, the above example does qualify as having a trailing @. (The first lone @ does not count, as it is followed
by v2. The second lone @ does qualify, even though it is followed by @4.)

*% The effect, as presently understood by the author, is that at the end of each time through the loop of reading the data,
SAS will not go to a new line. But then, depending on the raw data file content and the types of data items that occur
subsequently (in reiterating the INPUT specifications), SAS may go to a new line because it runs out of data on the
current line. The results can be peculiar and difficult to predict; they depend on the raw data. The author believes that
this has no Stata or Stat/Transfer equivalent.

* Two @’s with space between them is permitted, as they are two separate single @’s — though this is not particularly
useful.

*0 Stata's -infile- without a dictionary works that way, but -infile- with a dictionary cannot do it.

66

Stat/Transfer, there is no explicit translation, but it will contribute to the implicit position
calculation, if that is used.

As with the @ form, an identifier can be used in place of an integer literal, but the result is an
indeterminate position.

Multiple + specifications in sequence will be combined and reduced to one specification. Thus,
+3 +7 +2

will be processed as if it were a single instance of +12.

Note that +0 will be accepted but ignored. *'

A negative number can be used as well; parentheses are necessary:
+(-4)

In SAS, this means to go backwards by 4 places. There is no equivalent Stata or Stat/Transfer
feature. (_skip (—4) is not allowed in Stata.) However, if it is combined with other + entities
such that the total will reduce to a non-negative value, then you will have a usable result. Thus,

+9 +(-4)
is reduced to +5.

Note that there is a “collapse @+ option. This will reduce an @n +n sequence to a single equivalent
@n. Thus, when this option is activated, a sequence such as @3 +4 will be treated as if there had
been just @7. This can also help render a negative + specification as usable. Under this option, the
sequence @12 + (—4) will be treated as @8. (This option is always “on” for Stat/Transfer output.)
Under this option (or always for Stat/Transfer output), if the resulting position is non-positive, it
will be coerced to 1.

The #n form specifies a move to another line of the input data. This is used where you have
multiple lines of the raw data file corresponding to each observation — sometimes called “multiple
lines per case” or “multiple physical records per logical record”. In this situation, the number of
lines per observation is a fixed quantity. For example, if it is 5, then lines 1-5 are for observation 1,
lines 6-10 are for observation 2, lines 11-15 are for observation 3, and so on. Furthermore, and
continuing this example, you usually expect specific variables on lines 1, 6, 11, etc., and other
specific variables on lines 2, 7, 12, etc., and so on. (We are putting aside the possibility of the
jumping to the next line that can occur with list or formatted input.) With this style of data layout,
we refer to line 1, 2, 3, etc. of the raw data — meaning the first, second, third, etc. lines within each
group of m lines, where m is the number of lines per observation (5 in this example).

Thus the input_spec

*1 SAS accepts +0, but, as expected, this has no effect. Stata does not accept _skip(0), so nothing is output.

67

#3

means that whatever follows, until the next line-number-control specification is encountered, is to
be read from the third line of the raw data file — and every third line within groups of m lines.

Without any such line-number-control specifications, it is assumed that each observation is on one
line of the raw data file. L.e., m=1.

As with the @n form, the semantic rules require that n be positive.

Again, as with the @n form, an identifier can be used in place of n, but the result is an indeterminate
line number; the result is a “phantom” line number. (In this event, there is a first phantom line, and
possibly a second and so forth — one for each instance of an identifier used in place of a n integer
literal. They will appear as “H###1”, “###2”, etc. in the output.)

/ provides another means of specifying line-number-control; it signifies a move to the next line.

Still another method is to have multiple input statements; each one refers to the next line number
(except where a trailing @ is used; see below). Thus, in this example,

INPUT abc 3-7 def 12-17 / ghi 1-9 #4 jkl1 1-7;

assuming that this is the first INPUT in the data step, then it is equivalent to the sequence,
INPUT abc 3-7 def 12-17 / ghi 1-9 / / Jk1 1-7;

and is also equivalent to the sequence,

INPUT abc 3-7 def 12-17;
INPUT ghi 1-9;

INPUT;

INPUT k1 1-7;

Assuming that this is the first set of INPUT statements in the data step, then this specifies that abc
and def are on line 1, ghi is on line 2, and jkI is on line 4 — of every group. The number of lines per
observation (m in the discussion above) is computed as the maximal line number indicated by any
line-number-control specification — either explicitly in #n or implicitly using / or multiple INPUT
statements, and regardless of whether any actual variables are specified on that line. In this
example, m is 4, provided that this is the entirety of all input statements in the data step or that no
additional lines are referenced.

If m turns out to be greater than 1, then SASdecoder will write
_lines (m)

in the Stata dictionary; in the Stat/Transfer schema file, sufficient / specifications are written to
create the equivalent effect (i.e., m-1 occurrences of /). (In the Stat/Transfer schema file, all line-1
variables appear together, then a /, followed by all line-2 variables, and so forth. In the Stata
dictionary, variables appear in the same order as in the SAS INPUT statements.)

68

This m is presumably the correct number of lines per observation; you should verify that it is

correct by inspecting the raw data and possibly running the dictionary or schema; adjust as
42

necessary.

Input Specifications for Variables

Before proceeding, note that the input specifications will include a set of variable names —
explicitly or implicitly. Typically, these names will be unique within a data step, but uniqueness is
not required — in SAS, at least. (In SAS, if a variable name is mentioned multiple times in the
INPUT statements of a given data step, then it will be filled-in with values multiple times within
each data-reading cycle; the final value will prevail.) If SASdecoder encounters a name mentioned
multiple times in the INPUT statements of a given data step, it will simply write the name a
corresponding number of times in the output, and a warning will be issued*’. Stata does not accept
multiple occurrences of a variable name in a dictionary. Thus, in this circumstance, you should
modify some of the names to distinguish them. (You can modify either the SAS code or the Stata
dictionary.) In Stat/Transfer, multiple occurrences of a variable name are accepted; when
Stat/Transfer runs the schema, some of the names will be automatically modified to insure
uniqueness.

The specification for variables (variable_spec) consists of
limited_variable_list [fmt_modifier] [$] [position_spec_or_informat]

where limited_variable_list is one or more variables or other forms that symbolically denote
sets of variables. It is similar to a variable_list, but with certain restrictions**. Briefly, it is one or
more elements that are either variable names or ranges of variables or ranges of numerically-
suffixed variable names such as agel-age4. See the section on limited_variable_lists for more
on that matter.

fmt_modifier is an optional format modifier: either a colon (:) or an ampersand (&). The use
of format modifiers will be explained below.

The optional $ indicates that the variable is a character string; it is necessary if the variable's
type has not already been determined and you intend it to be character string.

Actually the $ and format modifiers may appear in any order. Thus, fmt_modifier and the $ can be
considered together as one optional grammatical unit. Also, & and : may appear repeatedly, though
once is enough. But the $ is allowed only once. If an informat, beginning with $, follows (in the

“21In Stata, in the absence of a _lines () directive, can guess m, based on the maximal line number it sees. But unless
SASdecoder sees an actual variable on that maximally-enumerated line, no mention of it will be made in the output
except for this _1lines () directive. Thus, it is generally necessary for the Stata dictionary to have the _lines ()
directive.

* Prior to version 6.3, SASdecoder required uniqueness of variable names in the INPUT statements of a data step.

* One restriction is that a colon wildcard is not allowed. But actually, a variable may be followed by a colon, but it is
not taken to be a wildcard, but rather as a format modifier. The other prohibited features are the predefined wildcards:
ALL, CHARACTER_, _CHAR_, and NUMERIC .

69

position_spec_or_informat segment), then a separate $ is not allowed. I.e., at most one $ is
allowed, including that which begins the informat.*

If limited_variable_list contains multiple variables, then the format modifiers or $ will affect only
the last variable mentioned (or implicitly mentioned).

position_spec_or_informat is either a position_spec or an informat, where...

position_spec specifies column input; it specifies the location of a fixed-position/fixed-
width field. For example, 13-20 signifies column positions 13 through 20. The full syntax of
position_spec will be described below.

informat 1s an allowable SAS informat — for formatted input, which implies a fixed field
width (in the absence of a colon format modifier), but not necessarily a fixed position. This will be
described briefly below, and in greater detail in the Formats and Informats and Informats in
Input Specifications sections.

Either a position_spec or an informat may appear, but not both.

position_spec_or_informat can also be entirely absent; this specifies list input, corresponding to
“free format” in Stata, or “format delimited spaces” in Stat/Transfer. (List input is supported by
Stat/Transfer, provided that the schema consists exclusively of list input.)

position_spec is used for column input; it can be either of these forms:

start_position [decimal_spec]
start_position — end_position [decimal_spec]

where start_position and end_position are non-negative integers, with start_position <=
end_position. If - end_position is absent, it is assumed to equal start_position (i.e., the field is of
width 1). If start_position is O, then both start_position and end_position are incremented by 1,
following SAS behavior.*®

decimal_spec is optional and can be either of these forms:

.decimal
decimal

where decimal is a non-negative integer, specifying the number of implicit decimal places in the
values to be read from the raw data field. Note that this is overridden if the data field contains an
explicit decimal point.

Space is required before . decimal or decimal (without the period), but is not allowed between .
and decimal. That is, if a period is present, then decimal must follow immediately. The form
without the period may be an archaic form, rarely seen nowadays.

*> SAS allows multiple $, but exhibits bad behavior.
* This is behavior that was observed in SAS, though not seen in official documentation.

70

decimal can have leading zeroes. Thus,

14-20 .2
and
14-20 .002

are equivalent.

A decimal may be specified with a character variable, but it is ignored. (SASdecoder issues a
warning; SAS ignores it silently.)

SAS accepts decimals that are greater than or equal to the width, such as...

input varl 2-4 .4 @12 var2 3.4;

but the corresponding Stata %infmts (%3 . 4) are not acceptable to Stata. (In this example, varl uses
column input; var2 uses formatted input.) If such a construct is encountered, the %infmts will be
written anyway, and a warning will be written in the output. It is up to the user regarding how to
handle the situation. (You can read without decimals, and then divide by a power of ten. But
properly, you will need to detect cases that have explicit decimal points in the raw data, and bypass
that division for those cases. Such an operation would require reading the field as a character string
value and inspecting that value for the presence of a decimal point.)

This reveals a difference in how SAS and Stata operate. SAS apparently reads the number, and then
divides by 10”decimal if no explicit decimal point occurs in the raw data. Stata, on the other hand,
attempts to insert a decimal point into a textual copy of the raw data item if no explicit decimal
point occurs. Then it attempts to read that result as a number. This can lead to problems (in Stata) if
there are "short" numbers written with leading spaces.

One consequence of this difference is that, in SAS, you can have a field one character wide, which
is read as a non-integer value. (One way to get this is to have a decimal_spec as part of a
position_spec that omits - end_position.) This is impossible in Stata. This construct is, however,
acceptable to Stat/Transfer; it can handle decimals that are greater than or equal to the width,
including the reading of a non-integer value from a field with a width of 1 — apparently the same as
SAS. The example shown above will result in a variable type of (F3.4) in the schema file.

informat is for formatted input. They are short constructs such as ¥9. 2 or F6 . that specify a fixed
width (9 and 6 in these examples), and other features about the data and how it is encoded. SAS
Informats comprise a vast set of possibilities, though only a small subset is accepted by
SASdecoder. This subject will be explained under Informats in Input Specifications.

Grouped_format_lists

A grouped_format_list is a shorthand way of notating a set of variable_specs and possible
pointercontrol and informats. It consists of a list of variable names and a corresponding list of other
feature that specify how the variables are to be read. Each list is set within parentheses; thus, a
grouped_format_list has the form:

71

(variable_list) (format_list)

See the section on variable_lists for a complete description of what may appear as variable_list.
Briefly it is a list of one or more variable names, with the possibility of ranges and wildcards. Note
that this includes the full set of variable_list forms — not the limited set. Thus, forms that are not
allowed in a variable_spec (wildcards and ranges) are allowed here. Except for numeric-suffix
ranges, it is doubtful that you would want to use these additional forms in a grouped_format_list,
however, numeric-suffix ranges are commonly used, as in

(agel-agelb) (4.)

format_list comprises a variety of things including informats; thus the name does not suggest the
full range of what goes in there. Roughly, it includes all the things that may precede and follow a
variable name in the “regular” part of an INPUT statement: pointercontrol, fmt_modifier, $
position_spec_or_informat. There are some other differences, as will be explained.

Formally, format_list is a sequence of one or more format_list_element, where format_list_element
is...

[preceders] follower

preceders is optional and comprises the same features as pointercontrol (q.v.) with the exception
that the trailing (or lone) @ is not allowed.

follower consists of the following form:
[fmt_modifierl] [$] [multiplier [fmt_modifier2]] [position_spec_or_informat]

This should look like a variable_spec, minus the variable (or the limited_variable_list, to be
precise), plus the insertion of the optional multiplier and possible second fmt_modifier. As with a
variable_spec, the $ can actually be before fimt_modifierl (the first one) or intermingled with it, but
only one $ is allowed. It indicates that the variable is character type, in case it is not already
established as such. fmt_modifier2 (the one after multiplier) is allowed only if there is a multiplier
(to be explained shortly), and a $ is not allowed in that position. position_spec_or_informat is the
same as described above under variable_spec. If a multiplier is present, then
position_spec_or_informat is required.

multiplier 1s a distinct feature. It consists of an integer literal followed by an asterisk, as in 4*, and
it indicates that the subsequent position_spec_or_informat is to be repeated as many times as
indicated by the integer literal. Thus, (4* 8.) isequivalentto (8. 8. 8. 8.).If amultiplier
is present, a fmt_modifier (but not $) may follow, but the multiplying effect applies to the
subsequent position_spec_or_informat. Note that, while a $ is not permitted after a multiplier, an
informat that begins with $ is permitted as is commonly seen:

(jobcodel-jobcoded) (4* $8.)

If multiplier is present, then fmt_modifierl affects only the first instance of the expanded
position_spec_or_informat; fmt_modifier2 affects all instances of the expanded

72

position_spec_or_informat. That is, fmt_modifier2 is subject to the multiplier; fmt_modifierl is
47
not

(The prohibition against a $ after a multiplier is a SASdecoder feature; SAS allows it, however a
variety of odd behaviors — read bugs — occur. Note also, that, while it is permitted to have a
multiplier followed by a position_spec (e.g., 4* 12-19), it would be rare to actually use such a
construct, as it would require that a multitude of variables are to be read from the same positions —
that is, they would get the same values. SAS also allows a form such as 2*3, which is interpreted
as 3 3, which specifies a single-character field at position 3 with 3 implied decimals. SASdecoder
does not follow this behavior. Finally note that SAS actually accepts multipliers is a wider variety
of places such as in the variable_list and in the regular part of an INPUT statement (i.e., outside a
grouped format list); SASdecoder does not accept these features, as they are probably unintended
and may exhibit odd behavior.)

The reason for denoting the format_list components as preceders and followers is that they are the
features that precede and follow a variable name in the regular part of an INPUT statement. The
preceders denote the location of the field, and the followers modify the reading of the characters.
This is important in determining how these elements align with the variable names in the first part
of the grouped_format_list, as a grouped_format_list gets interpreted as an equivalent sequence of
regular input components. You can think of the process of interpreting a grouped format list as that
of taking the variables and inserting them between the appropriate preceders and followers. For
example, in...

(housenumber street city) (@14 4. $25. @40 $20.)
housenumber is matched with @14 4.

street is matched with $25.
city is matched with @40 $20.

But note that the pointercontrol features apply as if they precede the variable names. Thus, this
example is equivalent to...

@14 housenumber 4. Street $25. @40 city $20.

Another important concept is that the format_list functions as a loop; its elements get cycled
through as often as needed. Thus, in matching the format_list elements to the variables, if you reach
the end of the format_list, (that is, there are fewer format_list_elements than variables) then you
start over at the beginning. Thus,

(street city county) ($25. $20.)
is equivalent to
(street city county) ($25. $20. $25.)

Though not explicitly stated above in the description of format_list, a “bare” set of preceders may
appear at the end of the format_list — with no follower. Such preceders will apply to the first
format_list_element if the format_list gets cycled. Thus,

(street city county) ($25. $20. +4)

47Forexample, (: 3* $5.) isequivalentto (: $5. $5. $5.), whereas (3* : $5.) isequivalentto (:
$5. : $5. : $5.).

73

is equivalent to
(street city county) ($25. $20. +4 $25.)

But any such preceders have no effect beyond the bounds of the grouped_format_list. Thus, in
(street city) ($25. $20. +4) county $25.

the +4 has no effect on county. More generally, anything remaining in the format_list once the
final follower™ is used will have no further effect.

A final note: SAS allows commas to be inserted in certain places in the format_list, supposedly to
disambiguate certain constructs. However, the author has not been able to determine where they are
supposed to be allowed, and what effect they actually have; they seem to have no effect. To date,
no attempt has been made to accommodate commas, and the author would appreciate if any users
can provide some feedback regarding how commas are supposed to be used and in what situations
they have a real effect.

Informats in Input Specifications
One possible component of the input_spec is an informat.
Informats describe how raw data fields are to be read.

As mentioned elsewhere, an informat is recognized by the fact that it either ends with a period or
has a single period within it; it does not begin with a period. What lies to the left of the period may
be a number —alone, or preceded by alphabetic characters. This number, if present, is known as the
width specification, or w for short.* What lies to the right of the period, if present, must be a
number, known as the decimal specification, or d for short. The informat may also be preceded by a
$ (either directly or with some space) to indicate a character variable. (The $ is optional if the type
of the corresponding variable is already established as character.)

Examples:

9.
9.2
F9.2
$12.

Informats can be used in two contexts: in an INPUT statement, or as assigned to a variable (in an
INFORMAT or ATTRIB statement).

The use of informats within an INPUT statement (following a variable name), usually implies
fixed-width fields; it does not, by itself, imply a fixed starting position. Within an INPUT
statement, informats are often combined with the @n pointercontrol to fix the starting position, as
...

*8 That’s the final one in terms of it being matched to a variable — not necessarily the same as the final one in the list.

* In terms of lexical rules, what lies to the left of the period may have digits other than those that lie directly behind the
period, as long as the informat starts with an alphabetic or a $, for example ABC12DEF6.2. But no actual informats of
this kind exist.

74

@20 myvar $4.
which is equivalent to

myvar $ 20-23
(column input).

Note, however, that it is permitted, to omit the @n (or other) pointercontrol, in which case, the
starting position may or may not be fixed; the starting position is wherever the preceding variable
left off, which may or may not be in a fixed position. Such a variable may have an implicitly fixed
position — if it is the first variable to be read from the given line (first item in the INPUT statement,
or first item after a line-movement specification), or if the preceding variable has a fixed starting
position (implicit or explicit) and fixed field width. See the implicit option or the “use implicit
positions” checkbox in the Options section for more on this subject.

While the use of informats is often equivalent to column input, some informats allow additional
features not available in column input.

In most cases, informats read a fixed number of characters. The exception is if you omit the width
part of the informat, e.g., $BZ ., rather than, say, $BZ4 . Then, for some specific informats, the
result is list input. But this should be regarded as a deviant case.

The following informats are accepted by SASdecoder. This is a small subset of what is possible in
SAS:

Informat Interpretation

w.d standard numeric

Fw.d standard numeric™

Bzw.d numeric, blanks as zeros

Sw. standard character

SCHARwW. character, not trimming leading blanks
SCHARZBwW. character, binary zeros as blanks

In these descriptions, w and d stand for integers — the width and implicit decimals, respectively.
Thus, some examples are 8.2, F8.2,and $12.

In all cases, the d is optional and defaults to 0. You can specify d as 0, which is equivalent to not
specifying the d. Thus, for example, 8. and 8. 0 are equivalent.’'

°% This was not found in the documentation available to the author. SAS apparently accepts this as equivalent to the
w.d format.

75

The w is optional for all but w.d and $w., though the results of omitting it are idiosyncratic. In
particular, if the variable is character, and the informat is F, CHAR, or CHARZB, then the field
width is taken to be the same as the storage length (which should already be established, possibly
taking a default of 8); if the variable is numeric, and the informat is F or BZ, then the field width is
taken to be 1. In all other cases, no field width is assigned, and the variable is read using list input.”

For the character informats, the $ may be separated from the rest of the informat.” Otherwise, no
space is permitted within the informat.

The standard informats (w.d, Fw.d, $w.) are the only ones that properly translate to Stata or
Stat/Transfer. The others (BZw.d, SCHARw., SCHARZBw.) are accepted but are just translated as
if they were a corresponding standard informat. In these cases, warnings are inserted into the
output. But note that the SCHARw. is not too far off, in that its only deviant feature is that it does
not trim leading spaces. Stata cannot do that, but the difference is probably of minor significance.
The BZw.d and $CHARZBw. informats, on the other hand, have no proper Stata or Stat/Transfer
equivalents, and their behavior can deviate significantly from their corresponding standard
informats, depending on the raw data. Nonetheless, they are allowed, since the differences only
occur on unusual forms of raw data.

SAS has a multitude of additional informats, but it is the understanding of the author that none of
them are applicable to Stata or Stat/Transfer.

Informats will translate to these Stata %infmts:

SAS informat Stata %infmt

w.d Sw.df

w. Swt

Fw.d Sw.df

Fw. Swt

Sw. SWS

BZw.d $w.df (with a warning)
SCHARwW. $ws (with a warning)
SCHARZBwW. $ws (with a warning)

The choice of s or f is, however, affected by the £_infmt and s_infmt options, or the “use f
informats” and “use s informats” checkboxes. The warning is that the SAS informat is unsupported
and the %infmt is the closest possible equivalent.

> The d part may have leading zeroes. Thus, F6 . 0002 is equivalent to F'6 . 2, which is also equivalent to 6 . 0002
and 6 .2. Note that while the w. d informat may look just like the textual representation of a floating point number, it
differs in this respect. Also, d is permitted on the character informats as well, but O is the only value allowed there.

52 This is observed SAS behavior, but not seen in documentation.

>3 The $ is really a separate token, indicating, character data. In effect, the informat itself is w., CHARw ., or
CHARZBw., but these tokens must be preceded by $ if the variable is not already defined as character string.

76

In Stat/Transfer, a simple fixed-width field is specified.

Format Modifiers

The : and & format modifiers may occur after limited_variable_list in an input_spec. They are used
with formatted input, though & can also apply to list input. If they appear after a multitude of
variables, they apply to the last variable only.

: specifies that the field is to be treated as list input, even if there is a format specification. Thus,
blanks are skipped before reading data, and the field extends until a blank is encountered or the end
of the line is reached. Again, as in list input for character data, the actual number of characters
stored is fixed — and it might possibly be fixed in the informat that follows. Consider...

INPUT lastname: $15.;

This specifies that lastname is to be read as list input. If it hasn’t been established already, then the
type is character of length 15.

& specifies that character values may include single blanks; this requires that the end of the field is
marked by two or more blanks to distinguish it from embedded blanks. This input scheme is not
supported in Stata or Stat/Transfer (to the author’s knowledge). SASdecoder will take note of it and
issue a warning that it is unsupported.

Storage Length Revisited

An important concept in data management is storage length: the space allocated to the variable in
your data-handling facility (SAS, Stata, etc.). This was covered under Storage Length in the
Fundamental Data-Reading Concepts section, but there are additional issues that should be
considered in the context of input specifications.

For character string variables, the storage length is usually a fixed quantity that you declare, such as
in

LENGTH myvar $ 20
in SAS, or

str20 myvar

in Stata. For numeric quantities in SAS, the storage length is usually coupled with the data type and
may or may not be under user control; we won't say much about that at this point (though see more
about this under the LENGTH and ATTRIB statements).

In SAS, the storage length of a character string variable may be set in several ways, such as with
the LENGTH, ATTRIB or INFORMAT statements, and is set the first time a character string
variable is mentioned in one of these statements. Thus, these statements should be used prior to the
INPUT statement. If no storage length has yet been set for a given variable by the time you reach
an INPUT statement, it will be set as the length implied by the field width in a column or formatted
input_spec. On the other hand, with list input, given no previously-set storage length, a character

77

string variable will be given a default storage length of 8. Thus, a list-input character string variable
specification such as

somevar $

where somevar has not previously had its length specified, is given a length of 8, and translates to
the Stata construct,

str8 somevar %s
or the Stat/Transfer schema construct,

somevar (A8)
Note that in this situation, 8 is the storage length — the maximum number of characters that can be
stored in somevar. The number of characters read from the raw data will depend on the data itself;
it may be less than or greater than 8. If another variable follows this in the INPUT statement and it

does not have a fixed starting location, then its starting location is wherever somevar left off, and
may differ from one observation to the next.

It may be tempting to try to adjust the length using informats in the input_spec, but informats imply
a fixed-length field. In other words, a lone $ (to indicate a character string variable) is not the same
as a $8. informat. Thus,

somevar $8.

specifies a fixed-width (not list input) 8-character field; the storage length will also be 8 if it has not
already been set to something else. (The starting position may or may not vary, depending on other
circumstances.)

78

Content of the Output Files

This section will briefly describe the content of the various output files.

Content of the Output File — Stata

The output Stata dictionary will start with a dictionary line, which will mention the raw data
file name if it was specified. This is followed by some commented information regarding how the
file was created.

If the filename contains special or illegal characters, then it is bound in quotation marks. And if it
contains illegal characters, a warning message 1s written. The special characters are those that are
allowed in filenames but, due to possible ambiguity in the command syntax, must be bound in
quotation marks. They are...

y N &= N/
plus space and tab.

The illegal characters are those that are not allowed at all in filenames. They are...

k] <> 2

These classifications are based on Windows practices. They may not exactly be correct in other
systems.

Further note that both \ and / are classified as special. In Windows, / is actually illegal, but is
regarded as merely special, due to the fact that Stata treats it as a directory separator. \ is not
allowed in the filenames per se, but does occur in file specifications as a directory separator. (In
some Windows utilities, / will function as a directory separator.) In Stata, the directory separator
can be either \ or /; they are equivalent. But also note that in Stata, \ can often cause problems
(though not in dictionaries) which can be remedied by switching to /. This is a Stata feature, not an
OS feature. (In some Stata contexts, problems with \ can be fixed by substituting \\ , but / is
generally safe and effective.)

Also note that the directory separator is \, while it is / in other systems (Unix and Mac). But
within Stata, it does not matter which you use.

The : is, similarly, not allowed in filenames per se, but is allowed in a full file specification, to
indicate a device, as in d: \myfile — and only in such a construction. SASdecoder does not go so
far as to distinguish this use of : from illegal ones.

If the " (quotation mark) character were to occur within a filename, then properly, compound
quotes would be needed. This is not done, but there is no real need for them since the quotation
mark is illegal in filenames anyway.

After this header sections, there is the section containing the variable specifications, each of which
is on a separate line. Variables will appear in the same order as in the SAS INPUT statements.

79

There may be other relevant entries suchas _lines (), _line (), _firstlineoffile(),
and _skip ().

For the character types, a corresponding Stata st r type will be specified, e.g., st r24; there is no
checking regarding the length limit, as this depends on your version of Stata. In general, there is no
guarantee that you will generate a valid Stata dictionary. But for reasonable and valid SAS code,
you will usually get a valid Stata dictionary.

For numeric types, the default type is float. However, this is subject to control by certain switches
or options. See the discussion of the doubles option or the “use doubles” checkbox, and the
inttypes option or the “use integer types” checkbox in the Options section for information on
how these operate. Additionally, under the inttypes option or the “use integer types” checkbox,
the type will be byte, int, or long, according to the field width, using the smallest type possible for
the given width. This option is for situations where you know that the raw data contain only
integers (no actual decimals) in these sorts of fields. There is generally no guarantee that this is the
case, but in many common situations, you may know, from inspecting the data or your knowledge
of the nature of the data, that it is true. On the other hand, it is possible that some of your items will
fall under this category, while others will not. In that case you will need to adjust the types on a
variable-by-variable basis. You can always just use float or double, and subsequently issue a
compress or recast command.

There are two overriding rules, however:

1. if the field width is 9 or more (with or without implied decimals), then the type will
always be double.

2. 1if the field width is 1 (with or without implied decimals), then the type will always be
byte.™

Note that the inttypes option or the “use integer types” checkbox applies only to fixed-width
fields — column or formatted input. It does not apply to list input, as it has no particular width.

In addition, you may get commented warnings alerting you to various conditions that you may need
to attend to. Generally these warnings follow the data item (or other condition) that they refer to.

The do-file will contain an infile command to refer to the dictionary (if one was written during
the same run that generated the do-file). In addition, if there were any value labels defined (via
PROC FORMAT ... VALUE statements in the SAS code), there will be the commands to define
these and to attach them to the appropriate variables.

> That is, for numeric field of width 1, the inttypes option is virtually always “on”. This rule makes sense, as, in
Stata, a 1-character field will never be read as a floating-point value. SAS, on the other hand, can read a 1-character
field as a floating-point value, using, for example, a 1.1 or 1.2 informat. Such informats will be translated by
SASdecoder, but will yield illegal %infmts in the Stata dictionary.

80

Content of the Output File — Stat/Transfer

The Stat/Transfer schema file begins with some commented header text, then a FILE statement and
a VARIABLES statement, followed by a list of variable specifications. Finally, if appropriate, there
will be a VALUE LABELS statement followed by value label definitions.

All line-1 variables will appear together, then a /, followed by all line-2 variables, and so forth (if
there are multiple lines per observation.

As in the Stata output, you may get commented warnings alerting you to various conditions that
you may need to attend to. Generally these warnings follow the data item (or other condition) that
they refer to.

81

Errors

In running SASdecoder, you may generate errors and warnings. When this happens, an error
message will be issued, and in most cases, the location of the offending input text will be indicated;
the line with the error will be written to the screen (or the Progress Log in the Windows Interface),
and a caret indicator will appear pointing to the place in question, as in...

** Semantic error; [10,1]
inpiut

AN

existing identifier of type command name expected55

The pair of integers in the square brackets ([10, 1]) indicates the line number and position of the
error in the source file — in this case, line 10 and position 1. The final line (existing
identifier...)is an explanation of the error.

Some conditions generate warnings; others are fatal. After a fatal error, processing stops, so only
one fatal error can be detected at a time; however, you may get two or three error messages as a
result of the same error.

The output file may include some warning messages (as commented text) — some in the header, and
others in the body mixed in with variable declarations. For the latter type, the warnings occur
immediately after the variable to which they refer. You can search for “**—--Warning:” in the
output to locate these.

> If there are any non-printing characters in the text, the indicator may not appear in the correct place. (Tabs may be
okay.) There is a remote (probably impossible) situation where the line in question is no longer in memory, in which
case the line and indicator will not be written. But in any case, the line and position will be reported, if it is an error in
the form of the SAS file.

82

Limitations

SASdecoder uses a fixed amount of memory for storing the information it gathers, so it is possible
to overwhelm its capacity. (You will get a message indicating some sort of overflow.) It is believed
that the capacity is generous enough to handle most SAS inputs, but if you do run into this problem
please contact Essistant Software about it.

If this problem does occur, one possible interim solution would be to divide up the SAS file into
pieces (or selectively comment-out parts of it), and later edit the results back together.

If you get “string table overflow”, you can try one of the 1Lookstr options. (See the Options
section.)

There is a vast range of possibilities in the few SAS statements that SASdecoder accepts, some of
which do not translate to Stata or Stat/Transfer. But SASdecoder should have enough capability to
be useful in most cases that are translatable.

83

Notable Omissions

There are some SAS features that might be possible to include, but have not yet been
accommodated. Prior to version 6.3, there were some notable omissions which have since been
addressed (grouped format lists, variable ranges). Other possibilities include allowing more options
on the INFILE statement (even if they have no effect on the resulting output).

Users are invited to suggest additional features for future development.

It is worth noting that the IF THEN and DO WHILE constructs can appear in conjunction with
INPUT statements, but they do not translate into Stata dictionaries or Stat/Transfer schemas. So
they are unlikely candidates for incorporation into SASdecoder. Some simple instances of these
constructs, however, would have a corresponding action in a Stata do-file. But it is beyond the
present goal of SASdecoder to include this capability. Note that where there is an IF THEN
construct that merely filters the observations (determines which one to include), then you can
comment-out the IF THEN construct in the SAS code and perform some filtering during the data-
reading process. For example, you can place a corresponding i £ qualifier on your Stata infile
command, or in the Stat/Transfer Observations panel using a case-selection (“where”) statement.
Or you can perform a corresponding filter at a later stage.

84

